

5987 East 71st Street, Suite 207, Indianapolis, Indiana 46220 (317) 595-6492 Fax (317) 598-9929

February 19, 1999

Mr. Donald Sutton, P.E.
Manager, Air Permit Section
Illinois Environment Protection Agency
Division of Air Pollution Control
2200 Churchill Road
P.O. Box 19506
Springfield, Illinois 62794-9506

Subject:

Administrative Application for CAAPP Part 70 Permit

Permit ID Nos.: 201801AAF & 201808ADB

IEPA Site Number: 2018080001

Pagel Landfill

Dear Sir:

Enclosed, please find a Part 70 permit application for Winnebago Reclamation Services, Inc. (WRS) - Pagel Landfill. This application is submitted consistent with our January 28, 1999 meeting, pursuant to 40 CFR 60, Subpart WWW—Standards of Performance for Municipal Solid Waste Landfills (NSPS). This application is to initiate the Part 70 permitting process. In addition, future amendments may be necessary to include an updated Continuous Joint Construction And Operating Permit, including documents such as the NSPS Gas Control System Design Plan and Title V Compliance Monitoring and Response Plan. Our schedule is for these plans to be finalized by June 1, 1999.

This Part 70 permit application merely combines the facility information contents of two (2) existing Illinois EPA Bureau of Air "Continuous Joint Construction And Operating Permits" (I.D. No.'s 201801AAF & 201808ADB). These permits involve a developing landfill with associated flare and sludge dryer gas controls. We trust that the enclosed information fulfills the administrative requirements for Part 70 permitting. Should you have questions, or if you need additional information, please contact Mr. Thomas Hilbert at (815) 874-4806 or myself at the Indianapolis office.

Sincerely,

Andrews Environmental Engineering, Inc.

Robert L. West

Environmental Engineer

enclosure

cc: Thomas Hilbert Bill Paraskevas John Lardner

WRS - PAGEL LANDFILL PART 70 PERMIT APPLICATION

Prepared for

Winnebago Reclamation Services Inc.

Pagel Landfill

Winnebago County, Illinois

February 19, 1999

CAAPP Part 70 Operating Permit Application Winnebago Reclamation Service, Inc.

Pagel Landfill

Distribution

No. of Copies	Sent to
2	Mr. Donald Sutton, P.E. Manager, Air Permit Section Division of Air Pollution Control Illinois Environmental Protection Agency 2200 Churchill Road Springfield, IL 62794-9276
2	Mr. Thomas Hilbert Environmental Engineer Winnebago Reclamation Service, Inc. 4920 Forest Hills Road Loves Park, IL 61111

WRS-PAGEL LANDFILL

PART 70 PERMIT APPLICATION

TABLE OF CONTENTS

SECTION 1Executive Summary
SECTION 2General Information
Landfill with Enclosed Gas Flare Control and NRG, Inc. Rotary Drum Dehydrator - Sludge Dryer Landfill Gas Control
SECTION 3Process/Control Information
SECTION 4 Compliance Data
SECTION 5Emission Characterization
<u>Appendices</u>
APPENDIX A EMISSIONS CALCULATIONS
Attachment A Annual Waste Acceptance Rates Attachment B Landfill Air Emissions Estimation Model Attachment C Fugitive Dust Emissions Source Description Attachment D AP-42, Supplement D, Section 2.4 Attachment E NSPS Emissions
APPENDIX B IEPA PART 70 PERMIT APPLICATION FORMS
APPENDIX CRelevant Site Permits
APPENDIX D Above Ground LFG Collection System and Flare Plan Sheet
APPENDIX E NSPS Gas Collection & Control System Design Plan (Reserved)
APPENDIX FCompliance Monitoring & Response Plan (Reserved)

1.0 Executive Summary

Pagel Landfill is subject to 40 CFR 60, Subpart WWW—Standards of Performance for Municipal Solid Waste Landfills (NSPS). According to the NSPS, any municipal solid waste (MSW) landfill with a design capacity greater than 2.5 million megagrams (Mg) and 2.5 million cubic meters (m3) is subject to part 70 permitting requirements [40 CFR 60.752(b)]. The *Initial Design Capacity and Nonmethane Organic Compounds (NMOC) Emission Rate Reports* for WRS - Pagel Landfill (dated June 10, 1996) reported a design capacity of 4.65 million Mg for the site. As a result, the site is subject to part 70 permitting requirements.

Because IEPA's streamlined part 70 permit application forms have been prepared for "typical" emissions sources, the format of the enclosed forms may vary slightly from the standard format. Any additional information not provided on these forms may be found in the body of this document. Much of the emission and facility information was taken directly from the source's IEPA Division of Air "Joint Continuous Construction And Operating Permits" (I.D. Nos. 201801AAF & 201808ADB) for a developing landfill with a flare and sludge dryer gas control system. A copy of the permits are included in Appendix C. The remaining emissions, including Hazardous Air Pollutants (HAPs) and fugitive dust sources, are estimated as shown in Appendix A.

The part 70 permit application includes information on the compliance status of the site. One requirement of the NSPS for MSW landfills is the submittal of a gas collection system for sites with nonmethane organic compound (NMOC) emissions greater than 50 Mg/yr. According to the most recent *Design Capacity Report*, the site's annual NMOC emission rate for the years 1996 - 1998 was on the order of 500 Mg/yr. Therefore, the site is required to submit plans for a gas collection system. Pagel Landfill recently applied for a permit modification from IEPA's Bureau of Land Management (BLM) for a Significant Modification associated with the landfill's South Unit regarding the Liner, Cap and Leachate Collection Redesign. The site is awaiting approval from IEPA's BLM. The permit modification application for this modification includes a gas management plan consistent with the gas system previously approved by IEPA. Although similar plans for a gas management system have been approved by IEPA's BLM and Division of Air, these plans may not completely fulfill the requirements of the NSPS; particularly in the older areas of the landfill. To fulfill all related requirements, the final part 70 application will *include NSPS Gas Collection & Control System Design Plans*, and a *Title V Compliance Monitoring & Response Plan*.

2.0 General Information

Winnebago Reclamation Service, Inc. owns and operates the Pagel Landfill, which is an existing municipal solid waste disposal facility located at 8403 Lindenwood Road, Rockford Illinois. It is approximately four miles south of the city of Rockford. A site location map showing the landfill location relative to nearest residences, nursing homes, hospitals, schools, and manufacturing establishments is depicted in Figure 1-1. The facility accepts municipal solid waste, construction and demolition debris and non-hazardous special waste.

The facility includes an existing waste disposal unit (northern unit) that is currently under operation and an expansion unit (southern unit) that is under development. Figure 1-2 shows the facility layout. The northern unit comprises 42.7 acres. Its operation is permitted under Illinois Environmental Protection Agency (IEPA) Permit Number 1991-138-LF. Operation of the northern unit should be completed by 2001. The southern unit comprises 27.5 acres.

3.0 Process / Control Information

Permitted Facilities

An enclosed landfill gas combustion flare is permitted by IEPA (ID No. 201801AAF) for the existing landfill. The proposed location of the flare is shown on the Landfill Gas (LFG) Collection System & Flare plan, Sheet 2 in Appendix D. The LFG collection system and flare are designed to minimize LFG gas migration away from the site.

The west half (approximate) of the existing unit is equipped with an active gas collection system. In this area, landfill gas is extracted via compressors located in an on-site gas processing plant operated by the Winnebago Gas Company. The compressed gas is transferred and combusted in a thermal sewage sludge dewatering plant operated by NRG Technologies, Inc. The NRG equipment is operated under IEPA permit ID No. 201808ADB.

The LFG Collection System & Flare plan (Sheet 2, Appendix D) depicts the existing and planned gas collection system in the landfill. The system will utilize approximately 37 vertical gas extraction wells and associated header pipes to extract LFG and transport it to the enclosed flare or NRG. All perimeter wells around the east end have been installed. Only interior wells on the east end have yet to be installed. The extraction wells and horizontal collection system are being expanded to the west to further control gas migration. These details will also be included in a Continual Joint Construction and Operation Air Permit. In addition, gas from the collection system located in the west half of the site may be directed to the proposed flare when then NRG plant is not in operation (typically weekends and holidays).

As filling progresses in the existing unit, the temporary extraction wells and header pipes will be removed or abandoned and a permanent gas collection system will be installed upon closure of the this unit, by 2001. The proposed flare will be operated 24 hours per day, 365 days per year. It is anticipated that the flare will be operated at the flare's maximum capacity of 1,000 standard cubic feet per minute (SCFM).

The enclosed flare will be capable of achieving 98% combustion efficiency.

Start-Up Procedures

The flare station will be equipped with a propane pilot system that will facilitate start-up. No significant increase in emissions is expected during start-up procedures.

Breakdowns and Outages

Pre-packaged flare stations are generally reliable and require a minimum of down time. The flare station will be equipped with a "down time" timer that will automatically deactivate the blowers and reignite the flame if the flare is extinguished by wind or inadequate methane content in the gas.

4.0 Compliance Data

Instrumentation and Monitoring

The flare station will be equipped with a flow meter mounted on the main gas collection header. Records of monthly landfill gas combustion will be kept on-site. In addition, landfill gas will be sampled and analyzed at least monthly for methane content, carbon dioxide, nitrogen, and oxygen.

5.0 Emissions Characterization

Calculations for the emissions from the flare are provided in Appendix A. Maximum theoretical emissions (MTE) are based on 24 hours per day, 365 days per year operation at the maximum capacity of the flare, 1,000 SCFM of LFG. To be conservative, is assumed that actual average emissions are the same as MTE.

—Source Pollutant Emissions Summary Sample Calculations

Emissions for Unit ID# CE1 (flare) were taken directly from information contained in the facility's existing air construction permit which is included in Appendix C of this permit application. For the administrative Part 70 application purposes, the sludge dryer is considered a trivial activity and emissions from this unit are not included separately in this permit application. However, total uncontrolled Potential to Emit (PTE) emissions from the landfill are provided in Appendix A - Table I. Also, controlled PTE in Table IV includes representative emissions from landfill gas combustion as well as emissions from the sludge dryer as indicated on the Flow Diagram.

Emissions for Unit ID# 2 (fugitive emissions from landfill gas (LFG) generation) include fugitive landfill gas emissions and fugitive dust emissions. Fugitive LFG emissions are required in determining applicability and source definition for the Part 70 permitting program. The following discussion demonstrates how these emissions are determined.

Task: Determine fugitive emissions from landfill gas (LFG).

Solution:

The first step in determining the fugitive LFG emissions from the landfill surface is to determine the methane generation rate from the landfill. Because the landfill continues to accept waste, the methane generation rate will continue to increase annually. U.S.EPA's Landfill Air Emissions Estimation Model was used to calculate the methane generation rate based on model parameter values listed in AP-42. Additionally, the future waste acceptance rate was estimated based on previous annual acceptance rates and is assumed to be steady through the closure year of 2004. Waste acceptance rates prior to 1997 were taken from the Revised Design Capacity Report for Pagel Landfill, Appendix A, Attachment E. Output from the EPA model is shown in Table B-I.

Table B-I. Output from EPA's Landfill Air Emissions Estimation Model using AP-42 (Fifth Edition) information for model input parameters.

	e: C:\PROJECTS\PAGE(
	Model Para	ameters		 - um-
Lo : 10 k : 0.0 NMO0 Metha	00.00 m^3 / Mg ***** Use 1400 1/yr ***** User Mode 0 : 924.00 ppmv ***** Use 10 : 55.0000 % volume 11 : 55.0000 % volume 12 : 55.0000 % volume	r Mode Selectior Selection ***** er Mode Selectio	ገ *****	:=
	Landfill Para	ameters		
Landfi Year (Capac Avera	ill type: No Co-Disposal Dpened: 1972 Current bity: 4689000 Mg ge Acceptance Rate Req Current Year to Closure	Year : 1999 Clo		
=====		========= sults		 : =
Year	Refuse In Place (Mg)	ethane Emissior (Mg/yr)		.
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999	9.972E+04 1.994E+05 2.992E+05 3.989E+05 4.986E+05 5.983E+05 6.980E+05 7.977E+05 8.975E+05 9.972E+05 1.097E+06 1.197E+06 1.296E+06 1.396E+06 1.496E+06 1.595E+06 1.695E+06 1.695E+06 1.895E+06 1.994E+06 2.094E+06 2.194E+06 2.194E+06 2.537E+06 3.077E+06 3.342E+06	2.661E+02 5.218E+02 7.674E+02 1.003E+03 1.230E+03 1.448E+03 1.657E+03 2.052E+03 2.237E+03 2.416E+03 2.587E+03 2.752E+03 2.910E+03 3.062E+03 3.208E+03 3.483E+03 3.483E+03 3.737E+03 3.737E+03 3.972E+03 4.082E+03 4.572E+03 5.634E+03 5.634E+03 6.121E+03	3.989E+05 7.821E+05 1.150E+06 1.504E+06 1.844E+06 2.171E+06 2.484E+06 3.075E+06 3.075E+06 3.621E+06 3.621E+06 4.125E+06 4.362E+06 4.590E+06 5.019E+06 5.019E+06 5.21E+06 5.415E+06 5.602E+06 5.781E+06 5.781E+06 6.119E+06 6.853E+06 7.641E+06 8.445E+06 9.175E+06	
2000 2001 2002 2003 2004	3.612E+06 3.881E+06 4.150E+06 4.420E+06 4.689E+06	6.600E+03 7.059E+03 7.501E+03 7.926E+03 8.334E+03	9.892E+06 1.058E+07 1.124E+07 1.188E+07 1.249E+07	

As the output indicates, the methane generation rate for 2004 is 1.249 x 10⁷ m³/yr. The uncontrolled fugitive emission rate of individual LFG compounds can be calculated by using the following equation (AP-42, Fifth Ed., Sec. 2.4.4.1, Equ. 5):

$$Q_{comp} = 1.82 Q_{CH_{\perp}} * \frac{C_{comp}}{1 * 10^6}$$
 (Equation B-1)

where: $Q_{comp} = Individual compound emission rate (m³/yr);$

 $Q_{CH_{\perp}}$ = Methane generation rate (m³/yr) (from EPA model);

 $C_{comp}\,$ = Individual compound concentration in landfill gas (ppmv); and

1.82 = Multiplication factor (assumes that approximately 55 percent of landfill gas is methane).

Regulated pollutants contained in LFG include CO, VOCs, and various HAPs. The following sample calculations are used to determine the fugitive CO emissions from the landfill. The volumetric CO emissions are first calculated using Equation B-1:

$$C_{CO}$$
 = 141.0 ppmv (AP-42, Fifth Ed., Sec. 2.4-1)
$$Q_{CO} = 1.82 \Big(1.249*10^7 \, \mathrm{m}^3 / \mathrm{yr} \Big) \Big(\frac{141.0 \mathrm{ppmv}}{1*10^6} \Big)$$

$$Q_{CO} = 3,205 \, \mathrm{m}^3 / \mathrm{yr}$$

Next, the mass CO emission rate can be determined. Mass emissions for individual LFG compounds can be estimated from the following equation (AP-42, Fifth Ed., Sec. 2.4.4.1, Equ. 6):

$$I_{comp} = Q_{comp} \left[\frac{MW_{comp}}{\left(8.205*10^{-5} \text{ m}^3 \cdot \text{atm/mol} \cdot ^\circ \text{K}\right) \left(1000 \frac{\text{g}}{\text{kg}}\right) \left(273+T\right)} \right]$$
 (Equation B-2)

where:

 I_{comp} = Individual compound mass emission rate (kg/yr);

 Q_{comp} = Individual compound emission rate (m³/yr);

T = Temperature of landfill gas (°C); and

 MW_{comp} = Molecular weight of individual compound (g/mol).

The uncontrolled mass CO emission rate is now calculated using Equation B-2 based on the following:

 MW_{CO} = 28.01 g/mol; T = 20 °C (assumed); Q_{CO} = 3,205 m³/yr; and Atmospheric pressure = 1 atm.

$$I_{CO} = (3,205^{\text{m}^3/\text{yr}}) \left\{ \frac{28.01^{\text{g}}_{\text{mol}}}{(8.205*10^{-5} \text{ m}^3 \cdot \text{atm/mol} \cdot \text{K})(1000^{\text{g}}/\text{kg})((273+20)^{\circ} \text{K})} \right\} (1\text{atm})$$

$$I_{CO} = 3,734^{\text{kg}}/\text{yr}, \text{ or}$$

$$I_{CO} = 4.12$$
tpy (uncontrolled emission rate)

Finally, the fugitive CO emission rate is determined. Fugitive emissions result because the LFG collection system is not capable of achieving a 100% collection efficiency. Uncollected emissions can be calculated with the following equation (AP-42, Fifth Ed., Sec. 2.4.4.2, Equ. 7):

$$1 - \frac{\% \text{ Collection Efficiency}}{100} \quad \text{(Equation B-3)}$$

The total fugitive CO emission rate is then calculated based on a system collection efficiency of 70%:

Fugitive CO emissions =
$$(4.12 \text{ tpy}) \left(1 - \frac{70}{100}\right)$$

The total fugitive VOC emissions, as well as individual fugitive HAP emissions (Form), were calculated using the same procedures as those above for fugitive CO emissions. These emissions are listed in Appendix A.

-Source HAP Pollutant Summary

Sample Calculations

The HAP emissions from Unit ID# CE1 (flare) were taken directly from the facility's air construction permit as described in the Sample Calculations section. Fugitive HAP emissions from Unit ID# 2 (landfill fugitive emissions) as a result of uncollected LFG were calculated by the same procedures used in the sample calculation for fugitive CO emissions in the Sample Calculations. Table IV in Appendix A displays all of the expected HAP emissions during the term of this Part 70 permit.

APPENDIX A EMISSIONS CALCULATIONS

Attachment A	Annual Waste Acceptance Rates
Attachment B	Landfill Air Emissions Estimation Model
	Fugitive Dust Emissions Source Description
	AP-42 Section 2.4
	NSPS Emissions

Attachment A

Annual Waste Acceptance Rates

WRS - Pagel Landfill Annual Waste Acceptance Rates¹

Year	Refuse Acceptance Rate	Refuse Acceptance Rate	Cumulative Total
	(tons)	(Mg)	Refuse In-place (Mg)
1972	109,846	99,718	0
1973	109,846	99,718	99,718
1974	109,846	99,718	199,436
1975	109,846	99,718	299,153
1976	109,846	99,718	398,871
1977	109,846	99,718	498,589
1978	109,846	99,718	598,307
1979	109,846	99,718	698,025
1980	109,846	99,718	797,743
1981	109,846	99,718	897,460
1982	109,846	99,718	997,178
1983	109,846	99,718	1,096,896
1984	109,846	99,718	1,196,614
1985	109,846	99,718	1,296,332
1986	109,846	99,718	1,396,049
1987	109,846	99,718	1,495,767
1988	109,846	99,718	1,595,485
1989	109,846	99,718	1,695,203
1990	109,846	99,718	1,794,921
1991	109,846	99,718	1,894,639
1992	109,846	99,718	1,994,356
1993	109,846	99,718	2,094,074
1994	109,846	99,718	2,193,792
1995	268,232	243,501	2,293,510
1996	291,102	264,262	2,537,011
1997	303,960	275,935	2,801,273
1998	292,060	265,132	3,077,208
1999	296,720	269,362	3,342,340
2000	296,720	269,362	3,611,702
2001	296,720	269,362	3,881,064
2002	296,720	269,362	4,150,426
2003	296,720	269,362	4,419,788
2004	closed	closed	4,689,150
•			

Acceptance rates for 1972-1994 are averaged, based on total existing North Unit waste capacity of 3,322,000 Mg less both waste accepted in 1995 and remaining existing unit volume at the end of 1995 (from May 1996 Sig. Mod. Application, Vol. II of II, Attachment 23).

Site design waste capacities (including both North and South Units) of 4,689,150 Mg (Total) are from Revised Design Capacity Report, 2-25-99.

^{3.} Waste acceptance rates for 1995-1998 were taken from information provided by WRS - Pagel Landfill, 1-05-99.

PAGEL LANDFILL

Revised Design Capacity Calculations

Prepared for

Winnebago Reclamation Service, Inc.

Winnebago County, Illinois

February 25, 1999

REVISED DESIGN CAPACITY CALCULATIONS

Winnebago Reclamation Service, Inc.

PAGEL LANDFILL

INITIAL DESIGN CAPACITY

The waste design capacity for Winnebago Reclamation Service, Inc. (WRS) - Pagel Landfill is being amended from the original document submitted to IEPA June 10, 1996 entitled, "Initial Design Capacity and Nonmethane Organic Compounds Emission Rate Reports" (IDCR), see Appendix A. For this report, the total airspace and plan area of the existing unit and the expansion unit at the site were initially calculated using AutoCAD release 12 and Softdesk AutoCAD Civil version 12.0. For that report, the maximum design capacity for the facility was determined to be 8,530,000 cy (4,645,000 Mg and 6,522,000 m³); therefore, pursuant to 40 CFR, Subpart WWW – Standards of Performance for Municipal solid waste Landfills (NSPS) WRS - Pagel Landfill expected to be subject to NSPS reporting and permitting requirements.

REVISED DESIGN CAPACITY

1. Airspace calculations: The most recent volumetric capacity for the landfill is being revised consistent with the latest amendments included with the Illinois EPA Bureau of Land, Significant Permit Modification Application Liner, Cap and Leachate Collection Redesign of Pagel Landfill – South Unit, December, 1998. Effective Net Air Space calculations for the South Unit are attached in a Foth & Van Dyke Memorandum, dated February 9, 1998, Attachment B. The revised Net Airspace for Pagel Landfill is detailed below:

•	North Unit	South Unit	Total Net Airspace
Net Airspace (yd³):	6,100,000	2,509,000	8,609,000
Plan area (ac):	42.7	27.5	

2. Average depth of solid waste: The average effective depth of solid waste was calculated by dividing the total net airspace by the plan area.

North Unit: $d = [6,100,000 \text{ yd}^3 \times 27 \text{ ft}^3/\text{yd}^3] / [42.7 \times 43,560 \text{ ft}^2/\text{ac}] = 88.5 \text{ ft}$ South Unit $d = [2,509,000 \text{ yd}^3 \times 27 \text{ ft}^3/\text{yd}^3] / [27.5 \times 43,560 \text{ ft}^2/\text{ac}] = 56.6 \text{ ft}$

3. Average solid waste acceptance rate: For the North Unit, the average solid waste acceptance rate was calculated by dividing the remaining net airspace by the number of years the facility is expected to remain operational. The north unit first received waste in 1972. Remaining airspace capacity is calculated using AutoCAD Release 13 V. C4 and Softdesk Earthworks Release 7, Average End method, from Log. 1995-250, Vol. II of II, Attachment 23 of the May 1996 "Application for Significant Modification to Permit for an Existing Unit", Appendix C. The remaining net refuse capacity at end of 1995 was estimated at 1,442,200 cy for the north unit.

$$6,100,000 \text{ cy} - 1,442,200 \text{ cy} = 4,657,800 \text{ cy}$$
 1996 Waste In-Place (@ 0.7646 m^3 / $\text{cy} = 3.56 \times 10^6 \text{ m}^3$)

4,657,800 cy x 1,200 lb/cy /2,000 lb/ton = 2,794,680 tons (@ 0.9078 Mg / ton = $2.537 \times 10^6 \text{ Mg}$)

In order to determine the early average annual waste acceptance rates, first the total waste in-place through 1995 (4,657,800 cy or 3,561,354 m³), less waste receipts for 1995 was determined as follows:

Waste acceptance rates are available for Pagel Landfill for the following years:

	<u>1998</u>	<u>1997</u>	<u>1996</u>	<u>1995</u>
Waste Received (tons) @ 0.9078 Mg / ton (Mg)	292,060 265,132	303,960 275,935	291,102 264,262	268,232 243,501
2.537011 x 10 ⁶ Mg - 24	3,501 Mg	= 2,293,510	Mg	1995 In-Place

This mass was divided evenly for the years1972 through 1994 (23 years). An average annual acceptance rate was estimated to be 99,718 Mg/yr (109,846 tons/year @ 0.9078 Mg / ton).

For the end of 1995, the combined remaining refuse capacity for both the north and south units amount to:

$$1,442,200 \text{ cy} + 2,509,000 \text{ cy}$$
 = 3,951,200 cy 1996 Available (@ 0.7646 m³ / cy = 3.021 x 10⁶ m³) = 2,370,720 tons

The annual waste acceptance rates were used in the methane generation estimation model to arrive at a remaining waste capacity of 1,346,810 Mg at the beginning of 1999. This remaining capacity vs. the most recent acceptance rate projects a remaining life of 4 ½ years. Five years was used for an even distribution of methane generation in the model through the year 2003.

1,346,810 Mg / 5 years = 269,362 Mg/yr

(@ 0.9078 Mg / ton = 2,152,139.62 Mg)

Refuse Acceptance for 1999-2004

- 4. **Compaction Density:** A net density of 1,200 lb/ lb/cy is used for these calculations, assuming a 2:1 compaction ratio is achieved for the refuse. This is a conservative value for emission calculation purposes, assuming optimum compaction of waste and that refuse weighs 600 lb/cy when it arrives at the facility, prior to being placed in the landfill. Converted to metric units, this value is equivalent to 0.712 Mg/ m³.
- 5. **Design Capacity:** The design capacity of the site was determined by summing the total airspace for the existing and expansion units. Total airspace was converted from cubic yards to cubic meters by multiplying by a conversion factor of 0.7646, and from tons to megagrams by multiplying by a conversion factor of 0.9078. The results of these calculations are detailed below.

	North Unit	South Unit	Total Waste Capacity
Net Airspace (m³):	4,664,000	1,918,000	6,582,000
Design Capcity (Mg):	3,322,000	1,367,000	4,689,000

APPENDIX A

INITIAL DESIGN CAPACITY REPORT - Calculations

Thomas Hilbert Environmental Engineer Winnebago Reclamation 8403 Lindenwood Rd. Rockford, IL 61109 (815) 874-4806 June 10, 1996

Mr. Donald Sutton
Illinois Environmental Protection Agency
Division of Air Pollution Control
P.O. Box 19506

Recycling and waste disposal

P.O. Box 19506 2200 Churchill Rd Springfield, IL 62706

Re: New Source Performance Standard Reporting

IEPA Site Number: 2018080001

Pagel Landfill Facility North and South Unit

Dear Mr. Sutton:

Winebago Reclamation Service (WRS) has completed the requested design capacity and nonmethane organic compound emission rate report. If you have any questions or would like any additional information, please feel free to give me a call

Sincerely,

Thomas Hilbert

Environmental Engineer

O. Box 2071 oves Park inois 61130

5.654.5952 4.815.654.4717

A William Charles Company

INITIAL DESIGN CAPACITY CALCULATIONS

Winnebago Reclamation Service, Inc. Rockford, Illinois

1. Airspace calculations: The total airspace and plan area of the existing unit and the expansion unit at the site were calculated using AutoCAD release 12 and Softdesk AdCadd Civil version 12.0. The results of these calculations are detailed below.

	Existing Unit	Expansion Unit
Total airspace (yd ³):	6,100,000	2,430,000
Plan area (ac):	42.7	27.5

2. Average depth of solid waste: The average depth of solid waste was calculated by dividing the total airspace by the plan area.

Existing Unit:

$$d = [6,100,000 \text{ yd}^3 \cdot 27 \text{ ft}^3/\text{yd}^3] + [42.7 \text{ ac} \cdot 43,560 \text{ ft}^2/\text{ac}] = 88.5 \text{ ft}$$

Expansion unit:

$$d = [2,430,000 \text{ yd}^3 \cdot 27 \text{ ft}^3/\text{yd}^3] + [27.5 \text{ ac} \cdot 43,560 \text{ ft}^2/\text{ac}] = 54.8 \text{ ft}$$

3. Average solid waste acceptance rate: For the existing unit, the average solid waster acceptance rate was calculated by dividing the total airspace by the number of years the facility is expected to be operational. Since the existing unit first received waste in 1972 and is expected to close early in the year 2001, the site's expected operating life is 29 years. The average solid waste acceptance rate for the expansion unit, which is still in the developmental stage, was assumed to be equal to that calculated for the existing unit. Please note that the compaction density as calculated in Item 4 was used to convert from total cubic yards to tons.

- 4. Compaction density: The compaction density of 1200 lb/yd³ was calculated assuming that the gate density of municipal solid waste is 600 lb/yd³ and that a 2:1 compaction ratio will be achieved. Converted to metric units, this value is equivalent to 0.712 Mg/m³.
- 5. Design Capacity: The design capacity of the site was determined by summing the total airspace for the existing and expansion units. Total airspace was converted from cubic yards to cubic meters by multiplying by a conversion factor of 0.7646, and from tons to megagrams by multiplying by a conversion factor of 0.9078. The results of these calculations are detailed below.

	Existing Unit	Expansion Unit	Total Facility
Total Airspace (m³):	4,664,000	1,858,000	6,522,000
Design Capacity (Mg):	3,322,000	1,323,000	4,645,000

APPENDIX B

Foth & Van Dyke 1/9/98 Memorandum

Waste and Earthwork Quantities for the Pagle Landfill, South Unit, Phase I

Foth & Van Dyke Memorandum

February 9,1998

TO: John Lardner (DM)

CC: Jim Buchberger

Bill Meinz

FR: Ron Meister M

RE: Waste and Earthwork Quantities for the Pagel Landfill, South Unit, Phase 1

As requested, we have competed the volume computations for the Pagel Landfill, South Unit, Phase 1. Note that we have referred to the various development phases as "modules" since the manner in which the landfill is proposed for development does not match the Cells 1, 2, 3 and 4 as proposed in the Plan Mod submitted by Andrews in 1991.

Modules 1, 2, 3, 4, and 5 are shown on Attachments 1 through 5, respectively, as the way which we understand you wish to develop the South Unit. Each attachment shows the top of waste grades for the respective module. Filled modules are shown screened to provide you with a view of the waste slope and base areas filled in the previous module. Because of the size of the final module, a fifth module was added to make the modules more equal in size. If you prefer another configuration, please let us know and we can make the appropriate changes.

The attached table lists the earthwork "cut" and "fill" and the "net air space". The net air space is the volume between the top of the sand drainage layer and the bottom of the final cover including daily and intermediate cover, if any. Also provided are the daily cover volumes based on a 20% allowance for daily cover as per the Andrews 1991 Sig Mod.

REM:1xb

Attachments

Module	Earthwork* Cut (cy)	Earthwork* Fill (cy)	Earthwork Net (cy)	Net Air Space (cy)	Daily Cover** (cy)
1	175,230	28,730	146,500	331,970	66,390
2	61,960	8,210	53,750	413,100	82,620
3	112,790	12,150	100,640	477,530	95,500
4	78,230	2,940	75,290	692,750	138,500
5	122,220	7,520	114,700	1,221,380	244,280
Total	550,430	59,550	490,880 (cut)	3,136,730	627,340

Prepared by: JR82 Checked by: REM

The cut-and-fill volumes may vary based on the actual extent of excavation and grading completed. Perimeter roadways and ditching are not included in these volume estimates except for Module 1.

^{**} Daily cover calculated assuming a 20% allowance for daily cover as per Andrews 1991.

ANDREWS ENVIRONMENTAL ENGINEERING INC.

29W100 Butterfield Road, Suite 105, Warrenville, Illinois 60555 / (630) 393-9474 Fax (630) 393-9495

	FAX DAT	<u> A SHEET</u>	
DATE:	2/24/99	ORIGINALS:	
TIME:	12:45 pm	WILL BE SENT TO YOU BY MAIL	
,		WILL NOT BE SENT TO YOU UNLESS REQUESTED	M
		WILL BE SENT TO YOU BY FEDERAL EXPRESS	
TO:	Bb best		
	598 - 96	979	
	BER: (3/7) 598 - 99		
JOB NUM	BER/CLIENT NUMBER: 9	0-114	
FROM:	JOHN LARONER		
	ANDDEWS ENVIOLINE	ITAL ENGINEEDING INC	
	ANDREWS ENVIRONMEN	(630) 393-9495	
		2	
NUMBER (OF PAGES (including this sheet):		
MESSAG	ES OR REMARKS (IF ANY):		
Bst) ~		
		mes calculated for 1	1/e
rea	designed South Uni-	mes Calculated for to at Posel Landfille	
Th	J	time does not include	
Fi	· · · · · · · · · · · · · · · · · · ·	er would edd approxima	,
		e the net air space vol	_
		Dohn	
T.			
	ence any difficulty receiving this transossible at (630) 393-9474.	smission, please notify:	

THANK YOU!

APPENDIX C

IN-PLACE WASTE CALCULATIONS

Source: "Application for Significant Modification to Permit for an Existing Unit" - IEPA Site No. 2018080001, May, 1996, Log. 1995-250, Vol. II of II, Attachment 23

SITE CAPACITY AND OPERATING LIFE CALCULATIONS

Given:

- 1. All volume calculations are based on the final grades depicted on Sheet B-3 of the site developmental drawings.
- 2. All volumes calculations represent total airspace. Final cover and daily/intermediate cover are not taken into account.
- 2. All volume calculations were performed using AutoCAD Release 13 v. C4 and Softdesk Earthworks Release 7, Average End method. The volumes reported are the average of two calculations, one using east-west sections and one using north-south sections, rounded to the nearest hundred cubic yards. The grid method was also used to verify the results.

Calculations:

Volume 1

The total increase in airspace for the final grades permitted under 35 IAC 807 to the proposed final grades depicted on Sheet B-3 was calculated. The final grades permitted under 35 IAC 807 are depicted in Figure 1.

Total Airspace:

1,629,000 c.y.

Volume 2

The total remaining airspace as of November, 1995 was calculated using the existing topography on Sheet B-1 and the proposed final grades depicted on Sheet B-3.

Total Airspace:

1,818,700 c.y.

Site Life

The site life was calculated using the remaining airspace and assuming a waste acceptance rate of 575 tons per day. The average density of as-received waste was assumed to be 600 lb/c.y. The final cover volume calculations are detailed in Attachment 21 (Clay Soil Availability Calculations) and the daily/intermediate cover volume was assumed to be 5% of the remaining airspace minus the final cover volume.

Remaining Airspace (as of November, 1995):	1,818,700 c,y.
Final Cover Volume:	300,600 c.y.
Daily Cover Volume	75,900 c.y.

Total Refuse Capacity:

1,442,200 c.y.

Operating Days per Year
Gate Refuse Received per Day
Gate Refuse Received per Year
Airspace Consumed per Year
(in-place, assume 2:1 compaction ratio)

286 days 1,917 c.y. 548,167 c.y. 274,083 c.y.

Site Life (as of November, 1995):

1,442,000 + 274,083 =

5.3 years

Therefore, the unit has a remaining site life of less than 5.3 years and will stop accepting refuse near the early in the year 2001. Closure will continue throughout the year 2001.

Attachment B

Landfill Gas Emissions Model (v. 2.01)

- Methane Generation Rate
- Carbon Monoxide (CO)
- Non-Methane Organic Compounds (NMOC)
 - Volatile Organic Compounds (VOC)
 - Toluene

Table I. WRS - Pagel Landfill Emissions Estimated Before Controls at Year 2004

Methane gene	ration rate (from	ı Landfili Gas Emi	ssion model) =	1,249E+07	m³/yr		-	
			=	839	cfm methane			,
			=	1,526	ofm LFG (assuming	methane conc.	55%	
		Assumed LF0	3 temperature =	20	°C (same temperature used by EPA Landill Gas Emission Model)			ssion Model)
	Assumed efficie	cency of LFG colle	ection system ² =	75%	(used to determine	fraction of LFG co	mponents colle	
***			Landfill	Landfill	Total Landfill	Captured LFG	Fugitive	Total Uhsantralleu
	Molecular	Median	Emission	Emission	Emissions	Emissions	Landfill	Emissions (state PTE der
Compound	Weight⁴	Concentration 4	Rate ⁵	Rate ⁶	Before Collection	75%	Emissions	92614C 1-2.55)
		(ppmv)	(m³/yr)	(kg/yr)	(tpy)	(tpy)	(tpy)	(ttv)
Criteria Poliutants						·		000000000000000000000000000000000000000
Carbon monoxide (CO)	28.01	141	3,202	3,729	4.1	3.08	1.03	4.1
VOC3 (as hexane)	86,18	360.4	8,184	29,324	32.3	24.24	8.08	25.2
PM ₁₀ (fugitive dust from vehical traffic)			See attache	ed calculation	s		11	11.0
		1			1			
Other Regulated Pollutants								
NMOC (regulated under §111 [NSPS] of CAA)	86,18	924	20,983	75,181	82.9	62.15	20.72	92.9
(9 9 1	1							
Hazardous Air Pollutants (HAPs)								
1,1.1-Trichloroethane (methyl chloroform)	133.42	0.48	11	60.46	0.07	0.05	0.017	0.07
1,1,2,2-Tetrachioroethane	167.85	1,11	26	175,90	0.19	0.15	0.048	0.19
1,1-Dichloroethane (ethylidene dichloride)	98.95	2.35	53	219.54	0.24	0.18	0.061	0.24
1,1-Dichloroethene (vinylidene chloride)	96,94	0.20	5	18.30	0.02	0.02	0.005	0.02
1,2-Dichioroethane (ethylene dichioride)	98,96	0.41	9	38.31	0.04	0.03	0.011	0.04
1,2-Dichloropropane (propylene dichloride)	112.98	0.18	4	19.20	0.02	0.02	0.005	0.02
Acrylonitrile	53.06	6.33	144	317.10	0.35	0,26	0.087	0,35
Carbon disulfide	76,13	0,58	13	41.69	0.05	0.03	0.011	0,05
Carbon tetrachloride	153.84	0.004	0	0,58	6.40E-04	4.80E-04	1.60E-04	6.40E-04
Carbonyl sulfide	60.07	0.49	11	27.79	0,03	0.02	0.008	0.03
Chlorobenzene	112.56	0,25	6	26.57	0.03	0.02	0.007	0.03
Chioroethane (ethyl chioride)	64.52	1,25	28	76.14	0.08	0.06	0.021	0.08
Chloreform	119.39	0.03	1	3,38	3.73E-03	2.80E-03	9.32E-04	3.73E-03
Dichlorobenzene ⁸	147.00	0.21	5	29,15	0.03	0.02	0.008	0.03
Dichloromethane (methylene chloride)	84.94	14.30	325	1,146.78	1,26	0.95	0.316	1.26
Ethyl benzene	106.16	4,61	105	462.05	0.51	0.38	0.127	0.61
Hexane	86.18	6,57	149	534.57	0.59	0.44	0.147	0.59
Mercury (total)	200.61	2.92E-04	0	0.06	6.10E-05	0.00	1,52E-05	6.10E-05
Methyl ethyl ketone	72.11	7.09	161	482,70	0.53	0.40	0.133	0.53
Methyl isobutyl ketone	100.16	1,87	42	176.83	0.19	0.15	0.049	0.19 0.64
Perchioroethylene (tetrachloroethylene)	165.83	3.73	85	583,99	0.64 0.39	0.48	0.161	0.39
Trichloroethylene (trichloroethene)	131,38	2.82 7.34	64 167	349,79 433,12	0.39	0.36	0.030	0.48
Vinyl chloride	62.5			1	1.34	1.00	0.334	1.34
Xylenes	106.16	12.10	275	1,212.77			0.039	0.16
Benzene	78.11	1.91	43	140,85	0.16 3.77	0.12	0.039	0.16 \$77
Toluene	92.13	39.30	892	3,418,42	3.77	2.83	10.942	

- Methane generation rate calculated by use of EPA's Landfill Gas Emissions Model. See attached calculations.
- 2. Default values taken from AP-42 Supplement D (August 1998).
 3. VOC median concentration taken from Footnote c of Table 2.4-2, AP-42 Supplement D (August 1998), for sites without co-disposal. VOC mol. weight assumed to be the same as NMOC (as hexane).
- 4. Values taken from Tables 2.4-1 and 2.4-2 of AP-42 Supplement D (August 1998).
- 5. Values calculated using Equation 3 of AP-42 Supplement D (August 1998) assuming multiplication factor of 2 instead of 1.82 (methane conc. assumed to be 55% per NSPS Gas Collection Design Plan).
- Values calculated using Equation 4 of AP-42 Supplement D (August 1998).
 Both captured and fuglifive emissions were used to determine potential to emit per 326 IAC 1-2-55.
- 3. Assumes dichiorobenzene exists in its para isomer state (the para isomer is a Title 111-listed HAP).
- 9. Total HAP emissions generated by landfill before control indicate that the source is a potential major source under §112 of the CAA.

Total uncontrolled landfill HAPs 9 = \$1.0

WRS - Pagel Landfill

		Estimated	i Uncontrolled	Part 70 PTË a	at Year 2004				
Methane gene	ration rate (fron	n Landfill Gas Emi	ssion model) =	1.249E+07	m ³ /yr (assume met	hane conc. = 55%	5)		
	,			839	cfm methane				
			=	1,526	cfm LFG (assuming methane conc. 55%				
•	Assumed LFG temperature					°C (same temperature used by EPA Landfill Gas Emission Model)			
	Assumed efficiency	cency of LFG colle	ction system ² =	75%	(used to determine	fraction of LFG co	mponents colle	ected from landfill)	
	T		Landfill	Landfill	Total Landfill	Captured LFG	Fugitive		
	Molecular	Median	Emission	Emission	Emissions	Emissions	Landfill	Total Uncontrolled	
Compound	Weight⁴	Concentration 4	Rate ⁵	Rate ⁶	Before Collection	(75%)	Emissions	Emiseons (PJE)	
Composita	112.3	(ppmv)	(m^3/Vr)	(kg/yr)	(tpy)	(tpv)	(tpv)	(fat)	
Criteria Pollutants		177		11.0.7.7	1	1.7.7			
Carbon monoxide (CO)	28.01	141	3,202	3,729	4.1	3.08	1.03	4.1	
VOC ³	86.18	360.4	8 184	29,324	32,3	24,24	8.08	32.3	
PM ₁₀ (fugitive dust from vehical traffic)	00.10	, J.		ed calculation			11	0.9	
FWI10 (10gkWe dust itom vetilical traffic)		[1	SOU ARRON		1				
Other Regulated Poliutants									
NMOC (regulated under §111 [NSPS] of CAA)	86,18	924	20,983	75,181	82.9	62.15	20.72	82.9	
, , , , , , , , , , , , , , , , , , , ,									
Hazardous Air Pollutants (HAPs)									
1,1,1-Trichloroethane (methyl chloroform)	133.42	0.48	11	60,5	0.07	0.05	0.017	0.07	
1,1,2,2-Tetrachioroethane	167.85	1.11	25	175.9	0.19	0.15	0,048	0.19	
1,1-Dichloroethane (ethylidene dichloride)	98,95	2.35	53	219.5	0.24	0.18	0,061	0.24	
1,1-Dichloroethene (vinylidene chloride)	96.94	0,20	5	18.3	0.02	0.02	0.005	0.02	
1,2-Dichloroethane (ethylene dichloride)	98.96	0.41	9	38.3	0.04	0,03	0.011	0.04	
1,2-Dichloropropane (propylene dichloride)	112.98	0.18	4	19.2	0.02	0.02	0.005	0.02	
Acrylonitrile	53.06	6.33	144	317.1	0,35	0.26	0.087	0.35	
Carbon disulfide	76.13	0.58	13	41.7	0,05	0.03	0.011	0.05	
Carbon tetrachloride	153.84	0.004	Đ	0,6	6.40E-04	4.80E-04	1.60E-04	6,40E-04	
Carbonyl sulfide	60.07	0.49	11	27.8	0.03	0.02	0.008	0.03	
Chlorobenzene	112.56	0.25	6	26.6	0.03	0,02	0.007	0.03	
Chloroethane (ethyl chloride)	64.52	1,25	28	76.1	0.08	0,06	0.021	0.08	
Chloroform	119,39	0.03	1	3.4	3.73E-03	2,80E-03	9,32E-04	3.73E-03	
Dichlorobenzene ⁸	147.00	0.21	5	29.1	0,03	0.02	0,008	0.03	
Dichloromethane (methylene chloride)	84.94	14.30	325	1,146.8	1.26	0,95	0.316	1.26	
Ethyl benzene	106.16	4.61	105	462.1	0.51	0.38	0.127	0.51	
Hexane	86.18	6.57	149	534,6	0.59	0,44	0.147	0.59	
Mercury (total)	200.61	2.92E-04	0	0.1	6.10E-05	4.57E-05	1,52E-05	6.10E-05	
Methyl ethyl ketone	72.11	7.09	161	482.7	0.53	0.40	0.133	0,53	
Methyl isobutyl ketone	100.16	1.87	42	176.8	0.19	0.15	0.049	0.19	
Perchloroethylene (tetrachloroethylene)	165.83	3.73	85	584.0	0.64	0,48	0.161	0.64	
Trichloroethylene (trichloroethene)	131.38	2.82	64	349.8	0.39	0,29	0.096	0,39	
Vinyl chloride	62.5	7.34	167	433.1	0.48	0,36	0.119	0.48	
Xylenes	106,16	12,10	275	1,212.8	1.34	1.00	0.334	1.34	
Benzene	78.11	1.91	43	140.9	0.16	0.12	0.039	0,16	
Toluene	92,13	39,30	892	3,418.4	3.77	2,83	0.942	3.77	

Total uncontrolled landfill HAPs= #4.9

Touriss.

1. Methane generation rate calculated by use of EPA's Landfill Gas Emissions Model. See attached calculations.

2. Default values taken from AP-42 Supplement D (August 1998).

3. VoC median concentration taken from Footnies of values 1998.

3. VoC median concentration taken from Footnies of Table 2.4-2, AP-42 Supplement D (August 1998), for sites without co-disposal, VOC mol. weight assumed to be the same as NMOC (as hexane).

4. Values taken from Tables 2.4-1 and 2.4-2 of AP-42 Supplement D (August 1998).

5. Values calculated using Equation 3 of AP-42 Supplement D (August 1998) assuming multiplication factor of 2 instead of 1.82 (methans conc. assumed to be 55% per NSPS Gas Collection Design Plan).

6. Values calculated using Equation 4 of AP-42 Supplement D (August 1998).

Fugitive dust (PM₂₀) from haul roads is not required in the determination of part 70 major source applicability.
 Assumes dichlorobenzene exists in its para isomer state (the para isomer is a Title III-listed HAF).

Table III.

WRS - Pagel Landfill

Determination of SO₂ and HCI Emissions (secondary emissions) from Flares

(Total summarized flare emissions are given in Table IV.)

Methane generation rate (from Landfill Gas Emission model) = 1.249E+07 m³/yr

55% Methane

Methane flow to flares (assume 75% collection efficiency¹ from landfill) = 9.37E+06 m³/yr (CH₄)

		Assumed LFG temperature =	20	°C (same ter	mp. used in	EPA model)
			Volume to	Mass to	Mass to	
	Molecular	Median	Flare	Flare	Flare	Control
Inlet Compound	Weight	Concentration ¹	Burner ²	Burner ³	Burner	Efficiency ⁴
	'	(ppmv)	(m³/yr)	(kg/yr)	(tpy)	(%)
Reduced sulfur	32.064	46.9	799	1,065	1.2	N/A
Total Chloride as Cl	35,453	42.0	715	1,054	1.2	98.0
	Mass Emissions	Mass Emissions	*****			
	from Flare	from Flare				
Emitted Pollutant	Burner ⁵	Burner				
	(kg/yr)	(tpy)				
Sulfur Dioxide (SO ₂)	2,130	2.3				

1. Information taken from AP-42 Supplement D (August 1998), Sec. 2.4.

Hydrogen Chloride (HCI)⁶

- Values calculated using Equation 3 of AP-42 Supplement D (August 1998) assuming multiplication factor of 2 instead of 1.82 (methane conc. assumed to be 55% per NSPS Gas Collection Design Plan).
- 3. Values calculated using Equation 4 of AP-42 Supplement D (August 1998).
- 4. Flare control efficiency for halogenated species as indicated in Table 2.4-3 of AP-42 Supplement D (August 1998).
- 5. Values calculated using Equations 7&10 of AP-42 Supplement D (August 1998).

1,064

6. HCl results from combustion of chlorinated species and is only one of several HAPs emitted from flare. See Table IV for total flare emissions.

Table IV. WR5 - Pagel Landfill

Methane generation rate (from Lan		1.249E+07	m³/yr (assur	me methane conc.	55%		
Methane flow to flare (assume 75% collection			m³/yr (CH ₄)				
	=	629	scfm CH ₄ (cr	onservatively assumed as dscfm methan	ie, used to detem	nine secondary emiss	ions)
А	Assumed LFG temperature =	20	°C (same ter	mperature used by EPA Landfill Gas Em	issions Model)		
Determination of Primary Flare Compounds (fi		s not destructed	during LFG				
Cr	ombustion)			Determination of Secondary Fi		s (products of LFG c	
1	Captured LFG	. '	Primary	· '	Emission	i	Secondary
	Emissions from	Control	Flare	Compound	Factor*	Emission	Flare
Compound	Landfill ²	Efficiency ³	Emissions	<u> </u>	(ib/hr/dscfm	Rate	Emissions
	(IPY)	(%)	(lpy)		methane)	(lb/hr)	(tpy)
Criteria Pollutants		,	,	Criteria Pollutants	Γ 1	i	1
Carbon monoxide (CO)	3.08	0.0	3,08	Nitragen oxides (NO _x) ⁸	1.50E-02	9.44	41,35
Vac	24.24	99.2	0.19	Carbon monoxide (CO)	0.028	17.62	77.19
		i i	1	Particulate matter (PM ₁₀)	2.90E-03	1.83	7.99
Other Regulated Pollutants			1 '	Sulfur dioxide (SO ₂)	Ser	e Table II	2.35
	62,15	99.2	0.50	SUITO GIOAGO (SOS)	ļ ,	1	1
NMOC (regulated under §111 [NSPS] of CAA)	02.10	<i>03.</i> 4	0.00	Hazardous Air Pollutants (HAPs)	1	l '	1
Hazardous Air Pollutants (HAPs)		,	 	Hydrogen chloride (HCI)	Ser	e Table II	1.17
1,1,1-Trichloroethane (methyl chloroform)	0.05	98.0	1.00E-03		f Total Emission		•
1.1.2.2-Tetrachioroethane	0.05	98.0	2.91E-03	-	Primary Flare	Secondary Flare	Total Flare
1,1,2,2-1 etrachioroethane 1,1-Dichloroethane (ethytidene dichloride)	0.15	98.0	3.63E-03	Pollulant	Emissions	Emissions	Emissions
1,1-Dichloroethane (ethytidene dichloride) 1,1-Dichloroethene (vinytidene chloride)	D.02	98.0	3.03E-04	/ VIII/III/	(tpy)	(tpy)	(toy)
1,1-Dichloroethane (vinyidene dichloride)	0.02	98.0	6.33E-04	Criteria Pollutants	1236		
1,2-Dichloropropane (propylene dichloride)	0.03	98.0	3.17E-04	CO	3.08	77.19	80.27
Acrylonitrile	0.26	99,7	7.86E-04	voc	0.19	N/A	0.19
Carbon disulfide	0.03	99.7	1.03E-04	NO _x ⁶	N/A	41.35	41.35
Carbon tetrachloride	0.00	98.0	9.61E-06	PM ₁₀	N/A	7.99	7,99
Carbonyt suffide	0.02	99.7	6.89E-05	\$O ₂	N/A	2.35	2.35
Chlorobenzene	0.02	98.0	4.39E-04	Other Regulated Pollutants	1	1	1
Chloroethane (ethyl chloride)	0.02	98.0	1.26E-03	NMOC	0.50	N/A	0.50
Chloroform	0.00	98.0	5.59E-05	Hazardous Air Pollutants (HAPs)	1		1
Dichlorobenzene ⁴	0.02	98.0	4.82E-04	Total HAPs	0.07	1.17	1.24
Dictrioromethane (methylene chloride)	0.02	98.0	1.90E-02		ontrolled PTE in		
Ethyl benzene	0.38	99.7	1.15E-03	MA SELECTION OF SECURITION OF PROPERTY AND ADDRESS.	Total Flare	Fugitive Landfill	Total Source
Hexane	0.44	99.7	1.33E-03	Pollutant	Emissions	Emissions 7	Emissions (PTE
Mercury (total)	0.00	0.0	4.57E-05		(tpry)	(tpy)	(fpy)
Methyl ethyl ketone	0.40	99.7	1.20E-03	Criteria Pollutants			
Methyl isobutyl ketone	0.15	99.7	4.39E-04	co	80.27	1,03	81.30
Perchloroethylene (tetrachloroethylene)	0,48	0.86	9.66E-03	Voc	0.19	8.08	B.27
Trichloroethylene (trichloroethene)	0.29	98.0	5.78E-03	NO _x ⁸	41.35	N/A	41.35
Vinyl chloride	0,36	98.0	7.16E-03	PM ₁₀	7.99	N/A	7.99
Xylenes	1.00	99.7	3.01E-03	SO ₂	2.35	N/A	2.35
Benzene	0.12	99.7	3.49E-04	-	l		
Toluene	2.83	99,7	8.48E-03	NMOC	0.50	20.72	21.22
Toldere		<u></u>	1	Hazardous Air Pollutants (HAPs)	ĺ	1	No. of the least o
i .	Total Primary HAP Emiss		= 6.95E-02		1 24	2.75	4.00

Notes: 1. Information taken from AP-42 Supplement D (August 1998) Sec. 2.4. 2. Values taken from Table I.

^{2.} Values taken from Table I.

3. Control efficiencies for flares as indicipled in Tabla 2.4-3 of AP 42 Supplement D (August 1999).

4. Assumes dishiproberosme exists in its para isomer state (the para isomer is a Tille II-listed HAP).

5. Values taken from Table 2.4-5 of AP 42 Supplement D (August 1996).

6. Because of unavailable NO_x data per AP-42 Supplement D (August 1998) Table 2.4-8, assumes NO_x is comprised only of NO₂.

7. Fuglifive dust (PM₁₀) from thank coads is not required in the determination of part 70 major source applicability.

Sc ce: C:\PROJECTS\PAGELL~1\TITLEV.PRM

Model Parameters

Lo : 100.00 m^3 / Mg ***** User Mode Selection ***** k : 0.0400 1/yr ***** User Mode Selection **** NMOC : 924.00 ppmv ***** User Mode Selection ****

Methane: 55.0000 % volume

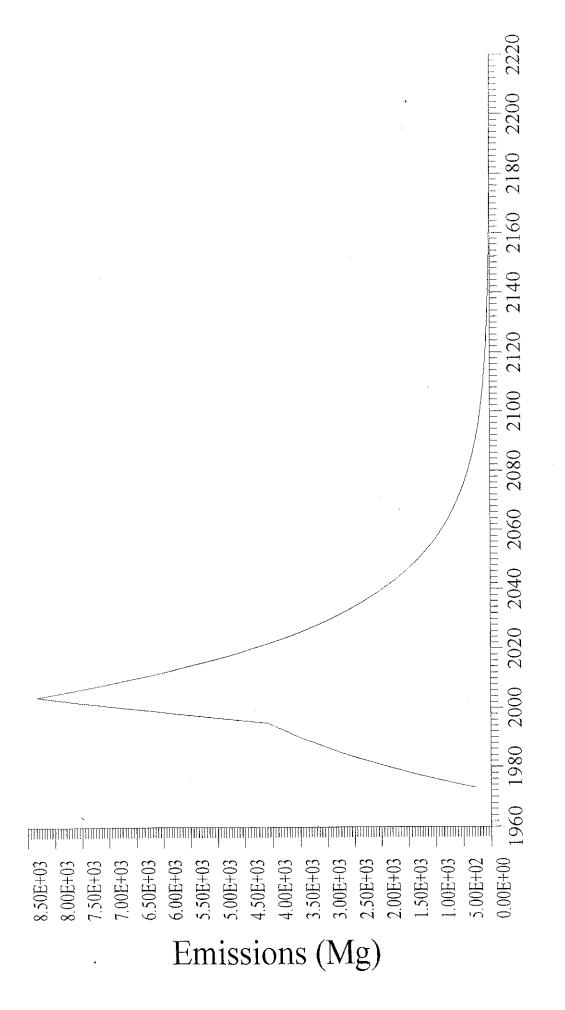
Carbon Dioxide : 45.0000 % volume

Landfill Parameters

Capacity : 4689000 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 269331.89 Mg/year


Model Results	

		Model Results	
======		======================================	Emission Rate
			(Cubic m/yr)
Year	Refuse In Place (Mg)	(Mg/yr)	
		2.661E+02	3.989E+05
1973	9.972E+04	5.218E+02	7.821E+05
1974	1.994E+05		1.150E+06
1975	2.992E+05	7.674E+02	1.504E+06
1976	3.989E+05	1.003E+03	1.844E+06
1977	4.986E+05	1.230E+03	2.171E+06
1978	5.983E+05	1.448E+03	2.484E+06
15	6.980E+05	1.657E+03	2.484E+06 2.786E+06
15	7.977至+05	1.859E+03	3.075E+06
1981	8.975E+05	2.052E+03	3.075E+06 3.354E+06
1982	9.972E+05	2.237E+03	3.621E+06
1983	1.097E+06	2.416E+03	3.878E+06
1984	1.197E+06	2.587E+03	
1985	1.296E+06	2.752E+03	4.125E+06
1986	1.396E+06	2.910E+03	4.362E+06
1987	1,496 E +06	3.062E+03	4.590E+06
1988	1.595E+06	3.208E+03	4.809E+06
1989	1.695E+06	3.348E+03	5.019E+06
1990	1.795E+06	3.483E+03	5.221E+06
1991	1.895E+06	3.613E+03	5.415E+06
1992	1.994E+06	3.737E+03	5.602E+06
1993	2.094E+06	3.857E+03	5.781E+06
1994	2.194E+06	3.972E+03	5.953E+06
1995	2.294E+06	4.082E+03	6.119E+06
1996	2.537E+06	4.572E+03	6.853E+06
1997	2.801E+06	5.098E+03	7.641E+06
1998	3.077E+06	5.634E+03	8.445E+06
1999	3.342E+06	6.121E+03	9.175E+06
2000	3.612E+06	6.600E+03	9.892E+06
2001	3.881E+06	7.059E+03	1.058E+07
2002	4.150E+06	7.501E+03	1.124E+07
2003	4.420E+06	7.926E+03	1.188E+07
2004	4.689E+06	8.334E+03	1.249E+07
2005	4.689E+06	8.007E+03	1.200E+07
2006	4.689E+06	7.693E+03	1.153E+07
2007	4.689E+06	7.392E+03	1.108E+07
2008	4.689E+06	7.102E+03	1.064E+07
2009	4.689E+06	6.823E+03	1.023E+07
2005	4.689E+06	6.556E+03	9,827E+06
$\tilde{2}$ $\tilde{0}$	4.689E+06	6.299E+03	9.441E+06
2012	4.689E+06	6.052E+03	9.071E+06
2012	4.0036700	0.00000	

2013	4.689E+06	5.814E+03	8.715E+06
2:	4.689E+06	5.586E+03	8.374E+06
2u >	4.689E+06	5.367E+03	8.045E+06
2016	4.689E+06	5.157E+03	7.730E+06
2017	4.689E+06	4.955E+03	7.427E+06
2018	4,689E+06	4.760E+03	7.136E+06
2019	4.689E+06	4.574E+03	6.856E+06
2020	4.689E+06	4.394E+03	6.587E+06
2021	4.689E+06	4.222E+03	6.329E+06
2022	4.689E+06	4.057E+03	6.080E+06
2023	4.689E+06	3.898E+03	5.842E+06
2024	4.689E+06	3.745E+03	5.613E+06
2025	4.689E+06	3.598E+03	5.393E+06
2026	4.689E+06	3.457E+03	5.181E+06
2027	4.689E+06	3.321E+03	4.978E+06
2028	4.689E+06	3.191E+03	4.783E+06
2029	4.689E+06	3.066E+03	4.596E+06
2030	4.689E+06	2.946E+03	4.415E+06
2031	4.689E+06	2.830E+03	4.242E+06
2032	4.689E+06	2.719E+03	4.076E+06
2033	4.689E+06	2.613E+03	3.916E+06
2034	4.689E+06	2.510E+03	3.763E+06
2035	4.689E+06	2.412E+03	3.615E+06 3.473E+06
2036	4.689E+06	2.317E+03	3.4/3E+06 3.337E+06
2037	4.689E+06	2.226E+03	3.206E+06
2038	4.689E+06	2.139E+03	3.080E+06
2039	4.689E+06	2.055E+03 1.975E+03	2.960E+06
2040	4.689E+06	1.897E+03	2.844E+06
2041	4.689E+06	1.823E+03	2.732E+06
2042	4.689E+06	1.751E+03	2.625E+06
2043	4,689E+06	1.683E+03	2.522E+06
2044	4.689E+06	1.617E+03	2.423E+06
21	4.689E+06	1.553E+03	2.328E+06
20-5	4.689E+06	1.492E+03	2.237E+06
2047	4.689E+06 4.689E+06	1.434E+03	2.149E+06
2048 2049	4.689E+06	1.378E+03	2.065E+06
2050	4.689E+06	1.324E+03	1.984E+06
2051	4.689E+06	1,272E+03	1.906E+06
2052	4.689E+06	1.222E+03	1,831E+06
2053	4.689E+06	1.174E+03	1.760E+06
2054	4.689E+06	1.128E+03	1.691E+06
2055	4.689E+06	1.084E+03	1.624E+06
2056	4.689E+06	1.041E+03	1.561E+06
2057	4.689E+06	1.000E+03	1.499E+06
2058	4.689E+06	9.611E+02	1.441E+06
2059	4.689E+06	9.234E+02	1.384E+06
2060	4.689E+06	8.872E+02	1.330E+06
2061	4.689E+06	8.524E+02	1.278E+06
2062	4.689E+06	8.190E+02	1.228E+06
2063	4.689E+06	7.869E+02	1.179E+06
2064	4.689E+06	7.560E+02	1.133E+06
2065	4.689E+06	7.264E+02	1.089E+06
2066	4.689E+06	6.979E+02	1.046E+06
2067	4.689E+06	6.705E+02	1.005E+06
2068	4.689E+06	6.443E+02	9.657E+05
2069	4.689E+06	6.190E+02	9.278E+05
2070	4.689E+06	5.947E+02	8.914E+05
2071	4.689E+06	5.714E+02	8.565E+05
2072	4.689E+06	5.490E+02	8.229E+05
2073	4.689E+06	5.275E+02	7.906E+05
2074	4.689E+06	5.068E+02	7.596E+05
2075	4.689E+06	4.869E+02	7.299E+05
26	4.689 E +06	4.678E+02	7.012E+05
2077	4.689E+06	4.495E+02	6.737E+05

2078	4.689E+06	4.319E+02	6.473E+05
	4.689E+06	4.149E+02	6.219E+05
2000 2000	4,689E+06	3.987E+02	5.976E+05
2081	4,689E+06	3.830E+02	5.741E+05
2081	4.689E+06	3.680E+02	5.516E+05
2083	4.689E+06	3.536E+02	5.300E+05
2084	4.689E+06	3.397E+02	5.092E+05
2084	4.689E+06	3.264E+02	4.892E+05
2086	4.689E+06	3.136E+02	4.701E+05
2087	4.689E+06	3.013E+02	4.516E+05
= :	4.689E+06	2.895E+02	4.339E+05
2088	4.689E+06	2.781E+02	4.169E+05
2089	4.689E+06	2,672E+02	4.006E+05
2090	4.689E+06	2.567E+02	3.848E+05
2091	4.689E+06	2.467E+02	3.698E+05
2092	4.689E+06	2.370E+02	3.553E+05
2093	4.689E+06	2,277E+02	3.413E+05
2094	4.689E+06	2.188E+02	3.279E+05
2095	4.689E+06	2.102E+02	3.151E+05
2096		2.020E+02	3.027E+05
2097	4.689E+06	1.940E+02	2.909E+05
2098	4.689E+06	1.864E+02	2.795E+05
2099	4.689E+06	1.791E+02	2.685E+05
2100	4.689E+06	1.721E+02	2.580E+05
2101	4.689E+06	1.654E+02	2.479E+05
2102	4.689E+06	1.554E+02 1.589E+02	2.381E+05
2103	4.689E+06	1.526E+02	2.288E+05
2104	4.689E+06		2.198E+05
2105	4.689E+06	1.467E+02	2.130E+05 2.112E+05
2106	4,689E+06	1.409E+02	2.029E+05
2107	4.689E+06	1.354E+02	1.950E+05
2108	4.689E+06	1.301E+02	1.873E+05
2100	4.689E+06	1.250E+02	1.800E+05
21	4.689E+06	1.201E+02	1.729E+05
2111	4.689E+06	1.154E+02	1.661E+05
2112	4.689E+06	1.108E+02	
2113	4.689E+06	1.065E+02	1.596E+05 1.534E+05
2114	4.689E+06	1.023E+02	**
2115	4.689E+06	9.831E+01	1.474E+05
2116	4.689E+06	9.445E+01	1.416E+05 1.360E+05
2117	4.689E+06	9.075E+01	
2118	4.689E+06	8.719E+01	1.307E+05
2119	4.689E+06	8.377E+01	1.256E+05 1.206E+05
2120	4.689E+06	8.049E+01	
2121	4.689E+06	7.733E+01	1.159E+05
2122	4.689E+06	7.430E+01	1.114E+05
2123	4.689E+06	7.139E+01	1.070E+05
2124	4.689E+06	6.859E+01	1.028E+05
2125	4.689E+06	6.590E+01	9.877E+04
2126	4.689E+06	6.331E+01	9.490E+04
2127	4.689E+06	6.083E+01	9.118E+04
2128	4.689E+06	5.845E+01	8.761E+04
2129	4.689E+06	5.615E+01	8.417E+04
2130	4.689E+06	5.395E+01	8.087E+04
2131	4.689E+06	5.184E+01	7.770E+04
2132	4.689E+06	4.980E+01	7.465E+04
2133	4.689E+06	4.785E+01	7.172E+04
2134	4.689E+06	4.597E+01	6.891E+04
2135	4.689E+06	4.417E+01	6.621 E +04
2136	4.689E+06	4.244E+01	6.361E+04
2137	4.689E+06	4.078E+01	6.112E+04
2138	4.689E+06	3.918E+01	5.872E+04
2139	4.689E+06	3.764E+01	5.642E+04
2117	4.689E+06	3.617E+01	5.421E+04
21	4.689E+06	3.475E+01	5.208E+04
2142	4.689E+06	3.338E+01	5.004E+04

2,7	4.689E+06	3.208E+01	4.808E+04	
2	4.689E+06	3.082E+01	4.619E+04	
2145	4.689E+06	2.961E+01	4.438E+04	
2146	4.689E+06	2.845E+01	4.264E+04 4.097E+04	
2147	4.689E+06	2.733E+01 2.626E+01	3.936E+04	
2148	4.689E+06 4.689E+06	2.523E+01 2.523E+01	3.782E+04	
2149 2150	4.689E+06	2.424E+01	3.634E+04	
2151	4.689E+06	2.329E+01	3.491E+04	
2152	4.689E+06	2.238E+01	3.354E+04	
2153	4.689E+06	2.150E+01	3.223E+04	
2154	4.689E+06	2.066E+01	3.096E+04	
2155	4.689E+06	1.985E+01	2.975E+04	
2156	4.689E+06	1.907E+01	2.858E+04	
2157	4.689E+06	1.832E+01	2.746E+04 2.639E+04	
2158	4.689E+06	1.760E+01 1.691E+01	2.639E+04 2.535E+04	
2159 2160	4.689E+06 4.689E+06	1.625E+01	2,436E+04	
2161	4.689E+06	1.561E+01	2.340E+04	
2162	4.689E+06	1.500E+01	2.248E+04	
2163	4.689E+06	1.441E+01	2.160E+04	
2164	4.689E+06	1.385E+01	2.076E+04	
2165	4.689E+06	1.330E+01	1.994E+04	
2166	4.689E+06	1.278E+01	1.916E+04	
2167	4.689E+06	1.228E+01	1.841E+04	
2168	4.689E+06	1.180E+01	1.769E+04	
2169	4.689E+06	1.134E+01	1.699E+04 1.633E+04	
2170	4.689E+06	1.089E+01 1.047E+01	1.569E+04	
2171 2172	4.689E+06 4.689E+06	1.04/E+01 1.006E+01	1.507E+04	
2172	4.689E+06	9.661E+00	1.448E+04	
21/3	4.689E+06	9.282E+00	1.391E+04	
21	4.689E+06	8.918E+00	1.337E+04	
2176	4.689E+06	8.569E+00	1.284E+04	
2177	4.689E+06	8.233E+00	1.234E+04	
2178	4.689E+06	7.910E+00	1.186E+04	
2179	4.689E+06	7.600E+00	1.139E+04	
2180	4.689E+06	7.302E+00	1.094E+04 1.052E+04	
2181	4.689E+06	7.015E+00 6.740E+00	1.0526+04 1.010E+04	
2182 2183	4.689E+06 4.689E+06	6.476E+00	9.707E+03	
2184	4.689E+06	6.222E+00	9.326E+03	
2185	4.689E+06	5.978E+00	8.961E+03	
2186	4.689E+06	5.744E+00	8.609E+03	
2187	4.689E+06	5.518E+00	8.272E+03	
2188	4.689E+06	5.302E+00	7.947E+03	
2189	4.689E+06	5.094E+00	7.636E+03	
2190	4.689E+06	4.894E+00	7.336E+03	
2191	4.689E+06	4.703E+00	7.049E+03 6.772E+03	
2192 2193	4.689E+06	4.518E+00 4.341E+00	6.772E+03 6.507E+03	
2193	4.689E+06 4.689E+06	4.171E+00	6.252E+03	
2195	4.689E+06	4.007E+00	6.006E+03	
2196	4.689E+06	3.850E+00	5.771E+03	
2197	4.689E+06	3.699E+00	5.545E+03	
2198	4.689E+06	3.554E+00	5.327E+03	
2199	4.689E+06	3.415E+00	5.118E+03	
2200	4.689E+06	3.281E+00	4.918E+03	
2201	4.689E+06	3.152E+00	4.725E+03	
2202	4.689E+06	3.029E+00	4.540E+03	
2203	4.689E+06	2.910E+00	4.362E+03	

Year

```
Sc -ce: C:\PROJECTS\PAGELL~1\TITLEV.PRM
```

Model Parameters

Lo : 100.00 m^3 / Mg ***** User Mode Selection ***** k : 0.0400 1/yr ***** User Mode Selection ***** NMOC : 924.00 ppmv ***** User Mode Selection *****

Methane: 55.0000 % volume

Carbon Dioxide : 45.0000 % volume Air Pollutant : Carbon Monoxide

Molecular Wt = 28.01 Concentration = 141.000000 ppmV

Landfill Parameters

Capacity : 4689000 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 269331.89 Mg/year

Model Results

		Carbon Monor	reserverses Rate
**	Deferre To Dingo (Mg)	(Mg/yr)	(Cubic m/yr)
Year	Refuse In Place (Mg)		/ Cabic / m/ yr/
1973	9.972E+04	1.191E-01	1.023E+02
1973	1.994E+05	2.336E-01	2.005E+02
1975	2.992E+05	3.436E-01	2.949E+02
1976	3.989E+05	4.492E-01	3.856E+02
19/6	4.986E+05	5.507E-01	4.727E+02
15	5.983E+05	6.483E-01	5.564E+02
1979	6.980E+05	7.420E-01	6.369E+02
1980	7.977E+05	8.320E-01	7.142E+02
1981	8.975E+05	9.185E-01	7.884E+02
1982	9.972E+05	1.002E+00	8.598E+02
1983	1.097E+06	1.081E+00	9.283E+02
1984	1.197E+06	1.158E+00	9.942E+02
1985	1.296E+06	1.232E+00	1.057E+03
1986	1.396E+06	1.303E+00	1.118E+03
1987	1.496E+06	1.371E+00	1.177E+03
1988	1.595E+06	1.436E+00	1.233E+03
1989	1.695E+06	1.499E+00	1.287E+03
1990	1.795E+06	1.559E+00	1.338E+03
1991	1.895E+06	1.617E+00	1.388E+03
1992	1,994E+06	1.673E+00	1.436E+03
1993	2.094E+06	1.727E+00	1.482E+03
1994	2.194E+06	1.778E+00	1.526E+03
1995	2.294E+06	1.827E+00	1.569E+03
1996	2.537E+06	2.047E+00	1.757E+03
1997	2.801E+06	2.282E+00	1.959E+03
1998	3.077E+06	2.522E+00	2.165E+03
1999	3.342E+06	2.740E+00	2.352E+03
2000	3.612E+06	2.954E+00	2.536E+03
2001	3.881E+06	3.160E+00	2.713E+03
2002	4.150E+06	3.358E+00	2.883E+03
2003	4.420E+06	3.548E+00	3.046E+03
2004	4.689E+06	3.731E+00	3.202E+03
2005	4.689E+06	3.585 E+0 0	3,077E+03
2006	4.689E+06	3.444E+00	2.956E+03
2007	4.689E+06	3.309E+00	2.840E+03
20	4.689E+06	3.179E+00	2.729E+03
20	4.689E+06	3.055E+00	2.622E+03
2010	4.689E+06	2.935E+00	2.519E+03

0077	A CODE LOC	2.82 0 E+00	2.420E+03	
20-1	4.689E+06	2.709E+00	2.325E+03	
2	4.689E+06		2.234E+03	
2013	4.689E+06	2.603E+00		
2014	4.689E+06	2.501E+00	2.147E+03	
2015	4.689E+06	2.403E+00	2.063E+03	
2016	4,689E+06	2.309E+00	1.982E+03	
2017	4.689E+06	2.218E+00	1.904E+03	
	4.689E+06	2.131E+00	1.829E+03	
2018		2.048E+00	1.758E+03	
2019	4.689E+06		1.689E+03	
2020	4.689E+06	1.967E+00		
2021	4.689E+06	1.890E+00	1.622E+03	
2022	4.689E+06	1.816E+00	1.559E+03	
2023	4,689E+06	1.745E+00	1.498E+03	
2024	4.689E+06	1.676E+00	1.439E+03	
2025	4.689E+06	1.611E+00	1.383E+03	
		1.548E+00	1.328E+03	
2026	4.689E+06	1.487E+00	1.276E+03	
2027	4.689E+06			
2028	4.689E+06	1.429E+00	1.226E+03	
2029	4.689E+06	1.373E+00	1.178E+03	
2030	4.689E+06	1.319E+00	1.132E+03	
2031	4.689E+06	1.267E+00	1.088E+03	
2032	4.689E+06	1.217E+00	1.045E+03	
	4.689E+06	1.170E+00	1.004E+03	
2033		1.124E+00	9.646E+02	
2034	4.689E+06			
2035	4.689E+06	1.080E+00	9.267E+02	
2036	4.689E+06	1.037E+00	8.904E+02	
2037	4.689E+06	9.967E-01	8.555E+02	
2038	4.689E+06	9.576E-01	8.220E+02	
2039	4.689E+06	9.200E-01	7.897E+02	
2040	4.689E+06	8.840E-01	7.588E+02	
2041	4.689E+06	8.493E-01	7.290E+02	
		8.160E-01	7.004E+02	
20	4.689E+06			
20	4.689E+06	7.840E-01	6.730E+02	
2044	4.689E+06	7.533E-01	6.466E+02	
2045	4.689E+06	7.237E-01	6.212E+02	
2046	4.689E+06	6.953E-01	5.969E+02	
2047	4,689E+06	6.681E-01	5.735E+02	
2048	4.689E+06	6.419E-01	5.510E+02	
2049	4.689E+06	6.167E-01	5.294E+02	
		5.925E-01	5.086E+02	
2050	4.689E+06		4.887E+02	
2051	4.689E+06	5.693E-01		
2052	4.689E+06	5.470E-01	4.695E+02	
2053	4.689E+06	5.255E-01	4.511E+02	
2054	4.689E+06	5.049E-01	4.334E+02	
2055	4.689E+06	4.851E-01	4.164E+02	
2056	4.689E+06	4.661E-01	4.001E+02	
2057	4.689E+06	4.478E-01	3.844E+02	
		4.303E-01	3.693E+02	
2058	4.689E+06		3.548E+02	
2059	4.689E+06	4.134E-01		
2060	4.689E+06	3.972E-01	3.409E+02	
2061	4.689E+06	3.816E-01	3.276E+02	
2062	4.689E+06	3.667E-01	3.147E+02	
2063	4.689E+06	3.523E-01	3.024E+02	
2064	4.689E+06	3.385E-01	2.905E+02	
2065	4.689E+06	3.252E-01	2.791E+02	
2065		3.124E-01	2.682E+02	
	4.689E+06		2.577E+02	
2067	4.689E+06	3.002E-01		
2068	4.689E+06	2.884E-01	2.476E+02	•
2069	4.689E+06	2.771E-01	2. 379E +02	
2070	4.689E+06	2.662E-01	2.2 85E +02	i i
2071	4.689E+06	2.558E-01	2.196E+02	
2072	4.689E+06	2.458E-01	2.110E+02	
20/2	4.689E+06	2.361E-01	2.027E+02	
20		2.369E-01	1.947E+02	
	4.689E+06		1.871E+02	
2075	4.689E+06	2.180E-01	1.0/16702	

2076	4.689E+06	2.094E-01	1.798E+02
2	4.689E+06	2.012E-01	1.727E+02
2018	4.689E+06	1.933E-01	1.659E+02
2079	4.689E+06	1.858E-01	1.594E+02
2080	4.689E+06	1.785E-01	1.532E+02
2081	4.689E+06	1.715E-01	1.472E+02
2082	4.689E+06	1.647E-01	1.414E+02
2083	4.689E+06	1.583E-01	1.359E+02
2084	4.689E+06	1.521E-01	1.305E+02
2085	4.689E+06	1.461E-01	1.254E+02
2086	4.689E+06	1.404E-01	1.205E+02
2087	4.689E+06	1.349E-01	1.158E+02
2088	4.689E+06	1.296E-01	1.112E+02
2089	4.689E+06	1.245E-01	1.069E+02
2090	4.689E+06	1.196E-01	1.027E+02
2091	4.689E+06	1.149E-01	9.866E+01
2092	4.689E+06	1.104E-01	9.479E+01
2093	4.689E+06	1.061E-01	9.107E+01
2094	4,689E+06	1.019E-01	8.750E+01
2095		9.795E-02	8.407E+01
2096	4.689E+06	9.411E-02	8.078E+01
2097	4.689E+06	9.042E-02	7.761E+01
2098	4.689E+06	8.687E-02	7.457E+01
2099	4.689E+06	8.346E-02	7.164E+01
2100	4.689E+06	8.019E-02	6.883E+01
2101	4.689E+06	7.705E-02	6.613E+01
2102	4.689E+06	7.403E-02	6.354E+01
2103	4.689E+06	7.112E-02	6.105E+01
2104	4.689E+06	6.833E-02	5.866E+01
2105	4.689E+06	6.566E-02	5.636E+01
2106	4.689E+06	6.308E-02	5.415E+01
21	4.689E+06	6.061E-02	5.202E+01
21	4.689E+06	5.823E-02	4.998E+01
2109	4.689E+06	5.595E-02	4.802E+01
2110	4.689E+06	5.375E-02	4.614E+01
2111	4.689E+06	5.165E-02	4.433E+01
2112	4.689E+06	4.962E-02	4.259E+01
2113	4.689E+06	4.768E-02	4.092E+01
2114	4.689E+06	4.581E-02	3,932E+01
2115		4,401E-02	3.778E+01
2116	4.689E+06	4.228E-02	3.630E+01
2117	4.689E+06	4.063E-02	3.487E+01
2118	4.689E+06	3.903E-02	3.350E+01
2119	4.689E±06	3.750E-02	3.219E+01
2120	4.689E+06	3.603E-02	3.093E+01
2121	4.689E+06	3.462E-02	2.972E+01
2122	4.689E+06	3.326E-02	2.855E+01
2123	4.689E+06	3.196E-02	2.743E+01
2124	4.689E+06	3.070E-02	2.636E+01
2125	4.689E+06	2.950E-02	2.532E+01
2126	4.689E+06	2.834E-02	2.433E+01
2127	4.689E+06	2.723E-02	2.338E+01
2128	4.689E+06	2.616E-02	2.246E+01
2129	4.689E+06	2.514E-02	2.158E+01
2130	4.689E+06	2.415E-02	2.073E+01
2131	4.689E+06	2.321E-02	1.992E+01
2132	4.689E+06	2.230E-02	1.914E+01
2133	4.689E+06	2.142E-02	1.839E+01
2134	4.689E+06	2.058E-02	1.767E+01
2135	4.689E+06	1.977E-02	1.697E+01
2136	4.689E+06	1.900E-02	1.631E+01
2137	4.689E+06	1.825E-02	1.567E+01
21	4.689E+06	1.754E-02	1.505E+01
21	4.689E+06	1.685E-02	1.446E+01
2140	4.689E+06	1.619E-02	1.390E+01
=	1.0004.00		

27				
143 4 .689EH-06 1.495E-02 1.239EH-01 2144 4 .689EH-06 1.380E-02 1.184EH-01 2144 4 .689EH-06 1.380E-02 1.184EH-01 2145 4 .689EH-06 1.380E-02 1.184EH-01 2145 4 .689EH-06 1.274E-02 1.093EH-01 2146 4 .689EH-06 1.274E-02 1.093EH-01 2147 4 .689EH-06 1.274E-02 1.093EH-01 2147 4 .689EH-06 1.176EH-02 1.095EH-01 2149 4 .689EH-06 1.176EH-02 1.095EH-01 2149 4 .689EH-06 1.085EH-02 9.316EH-00 2150 4 .689EH-06 1.085EH-02 9.316EH-00 2150 4 .689EH-06 1.085EH-02 9.316EH-00 2151 4 .689EH-06 1.043EH-02 8 .950EH-00 2151 4 .689EH-06 1.043EH-02 8 .950EH-00 2152 4 .689EH-06 9 .625EH-03 8 .262EH-00 7 .938EH-00 2153 4 .689EH-06 9 .625EH-03 7 .938EH-00 2154 4 .689EH-06 8 .885EH-03 7 .627EH-00 2155 4 .689EH-06 8 .885EH-03 7 .328EH-00 2155 4 .689EH-06 8 .885EH-03 7 .328EH-00 2155 4 .689EH-06 8 .885EH-03 7 .032EH-00 2155 4 .689EH-06 8 .885EH-03 7 .032EH-00 2155 4 .689EH-06 8 .537EH-03 7 .328EH-00 2155 4 .689EH-06 8 .537EH-03 7 .328EH-00 2155 4 .689EH-06 8 .537EH-03 7 .032EH-00 2155 4 .689EH-06 8 .537EH-03 7 .032EH-00 2155 4 .689EH-06 6 .990EH-03 6 .090EH-03 6 .000EH-00 2163 4 .689EH-06 6 .990EH-03 6 .000EH-00 2163 4 .6	0.1	4 689E+06	1.556E-02	
1.43	· ·			
1144				
1.1188-01 1.2748-02 1.1093E+01 1.2748-02 1.1093E+01 1.2748-02 1.1093E+01 1.2748-02 1.1093E+01 1.2748-02 1.1093E+01 1.2748-02 1.1093E+01 1.176E-02 1.009E+01 1.130E-02 9.696E+00 1.130E-02 9.696E+00 1.130E-02 9.696E+00 1.130E-02 9.696E+00 1.130E-02 9.696E+00 1.130E-02 9.696E+00 1.043E-02 9.316E+00 1.043E-03 9.62E+00 1.043E-03 9.62E+03 9.		·		
1146				
1417				1.093E+01
2148			1,224E-02	
2149				
2150		4.689E+06		
2151 4.689E+06 1.002E-02 8.599E+00 2153 4.689B+06 9.625E-03 8.262E+00 2154 4.689E+06 9.625E-03 7.938E+00 2155 4.689E+06 8.575E-03 7.527E+00 2156 4.689E+06 8.575E-03 7.527E+00 2156 4.689E+06 8.575E-03 7.228E+00 2157 4.689E+06 7.851E-03 7.041E+00 2158 4.689E+06 7.851E-03 7.041E+00 2158 4.689E+06 7.851E-03 6.499E+00 2159 4.689E+06 7.572E-03 6.499E+00 2160 4.689E+06 7.275E-03 6.244E+00 2161 4.689E+06 6.990E-03 5.764E+00 2162 4.689E+06 6.725E-03 5.538E+00 2163 4.689E+06 6.199E-03 5.321E+00 2164 4.689E+06 6.199E-03 5.321E+00 2165 4.689E+06 5.956E-03 4.912E+00 2167 4.689E+06 5.723E-03 4.912E+00 2167 4.689E+06 5.283E-03 4.719E+02 2169 4.689E+06 5.283E-03 4.534E+00 2169 4.689E+06 5.283E-03 4.534E+00 2170 4.689E+06 4.665E-03 4.557E+00 2171 4.689E+06 4.665E-03 4.022E+00 2174 4.689E+06 4.502E-03 3.864E+00 2174 4.689E+06 4.502E-03 3.712E+00 2177 4.689E+06 4.665E-03 4.022E+00 2170 4.689E+06 3.956E-03 4.022E+00 2171 4.689E+06 3.956E-03 3.712E+00 2172 4.689E+06 3.956E-03 3.712E+00 2173 4.689E+06 4.502E-03 3.864E+00 2174 4.689E+06 3.956E-03 3.25E-03 2174 4.689E+06 3.952E-03 3.272E+00 2175 4.689E+06 3.952E-03 3.272E+00 2176 4.689E+06 3.992E-03 3.272E+00 2177 4.689E+06 3.992E-03 3.272E+00 2178 4.689E+06 3.992E-03 3.272E+00 2179 4.689E+06 3.992E-03 3.272E+00 2179 4.689E+06 3.956E-03 3.292E+00 2180 4.689E+06 3.992E-03 3.297E+00 2181 4.689E+06 3.992E-03 3.297E+00 2182 4.689E+06 3.992E-03 3.297E+00 2183 4.689E+06 3.992E-03 3.297E+00 2184 4.689E+06 3.992E-03 3.297E+00 2185 4.689E+06 3.992E-03 3.297E+00 2186 4.689E+06 3.992E-03 3.297E+00 2187 4.689E+06 3.992E-03 3.297E+00 2188 4.689E+06 3.992E-03 3.297E+00 2189 4.689E+06 3.992E-03 3.297E+00 2180 4.689E+06 3.992E-03 3.297E+00 2180 4.689E+06 3.992E-03 3.297E+00 2181 4.689E+06 3.992E-03 3.297E+00 2189 4.689E+06 3.992E-03 3.297E+00 2189 4.689E+06 3.992E-03 3.297E+00 2189 4.689E+06 3.992E-03 3.297E+00 2189 4.689E+06 3.992E-03 3.297E+00 2190 4.689E+06 3.992E-03 3.299E+00 2190 4.689E+06 3.992E-03 3.299E+00 2190 4.689E+06 3.992E-03 3.299E+00 2190 4.689E+06 3.992E-03 3.299E+00 2190 4.689E+06 3.	_	4.689E+06		
2152		4.689E+06		
2153		4.689E+06		
2154		4.689E+06		
2155		4.689E+06		
2156		4.689E+06		
2157		4.689E+06		
2158		4.689E+06	- · · · · · · · · · · · · · · · · · · ·	
2159		4.689E+06		
2160		4.689E+06		
2161		4.689E+06		
2162	2161	4.689E+06.		
2163	2162	4.689E+06		
2164 4.8898+06 5.956E-03 5.112E+00 2166 4.689E+06 5.723E-03 4.912E+00 2167 4.689E+06 5.723E-03 4.719E+00 2168 4.689E+06 5.498E-03 4.719E+00 2169 4.689E+06 5.075E-03 4.357E+00 2170 4.689E+06 4.876E-03 4.186E+00 2171 4.689E+06 4.685E-03 4.022E+00 2171 4.689E+06 4.502E-03 3.864E+00 21 4.689E+06 4.502E-03 3.712E+00 21 4.689E+06 4.552E-03 3.712E+00 21 4.689E+06 4.552E-03 3.712E+00 2174 4.689E+06 4.555E-03 3.712E+00 2175 4.689E+06 3.992E-03 3.427E+00 2176 4.689E+06 3.992E-03 3.293E+00 2177 4.689E+06 3.686E-03 3.164E+00 2178 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.541E-03 3.039E+00 2180 4.689E+06 3.269E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.90E+00 2181 4.689E+06 3.017E-03 2.590E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 3.017E-03 2.590E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.785E-03 2.391E+00 2186 4.689E+06 2.785E-03 2.391E+00 2187 4.689E+06 2.785E-03 2.391E+00 2188 4.689E+06 2.785E-03 2.391E+00 2189 4.689E+06 2.105E-03 1.807E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.105E-03 1.807E+00 2193 4.689E+06 2.105E-03 1.807E+00 2194 4.689E+06 1.943E-03 1.736E+00 2195 4.689E+06 1.794E-03 1.540E+00 2197 4.689E+06 1.794E-03 1.409E+00 2199 4.689E+06 1.794E-03 1.479E+00 2199 4.689E+06 1.794E-03 1.409E+00 2199 4.689E+06 1.599E-03 1.312E+00 2200 4.689E+06 1.599E-03 1.312E+00 2201 4.689E+06 1.469E-03 1.21EE+00 2201 4.689E+06 1.599E-03 1.312E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.1164E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.1164E+00 2201 4.689E+06 1.356E-03 1.1164E+00 2201 4.689E+06 1.356E-03 1.1164E+00 2202 4.689E+06 1.356E-03 1.1164E+00 2202 4.689E+06 1.356E-03 1.1164E+00 2202 4.689E+06 1.	2163	4.689E+06		
2166 4.689E+06 5.723E-03 4.912E+00 2167 4.689E+06 5.498E-03 4.719E+00 2168 4.689E+06 5.283E-03 4.534E+00 2169 4.689E+06 5.075E-03 4.357E+00 2170 4.689E+06 4.876E-03 4.186E+00 2171 4.689E+06 4.685E-03 4.022E+00 2171 4.689E+06 4.502E-03 3.864E+00 21 4.689E+06 4.502E-03 3.864E+00 21 4.689E+06 4.525E-03 3.712E+00 2174 4.689E+06 4.155E-03 3.567E+00 2175 4.689E+06 3.992E-03 3.427E+00 2176 4.689E+06 3.992E-03 3.427E+00 2177 4.689E+06 3.686E-03 3.164E+00 2178 4.689E+06 3.686E-03 3.193E+00 2179 4.689E+06 3.686E-03 3.193E+00 2179 4.689E+06 3.686E-03 3.039E+00 2179 4.689E+06 3.269E-03 2.806E+00 2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.017E-03 2.920E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 3.017E-03 2.590E+00 2184 4.689E+06 2.899E-03 2.489E+00 2185 4.689E+06 2.785E-03 2.391E+00 2186 4.689E+06 2.785E-03 2.391E+00 2187 4.689E+06 2.77EE-03 2.297F+00 2188 4.689E+06 2.57TE-03 2.297F+00 2189 4.689E+06 2.57TE-03 2.297F+00 2189 4.689E+06 2.191E-03 1.80FE+00 2189 4.689E+06 2.191E-03 1.891E+00 2191 4.689E+06 2.281E-03 1.955E+00 2192 4.689E+06 2.191E-03 1.80FE+00 2193 4.689E+06 1.794E-03 1.736E+00 2194 4.689E+06 1.794E-03 1.736E+00 2195 4.689E+06 1.794E-03 1.736E+00 2197 4.689E+06 1.794E-03 1.540E+00 2199 4.689E+06 1.794E-03 1.540E+00 2199 4.689E+06 1.794E-03 1.540E+00 2199 4.689E+06 1.794E-03 1.540E+00 2191 4.689E+06 1.794E-03 1.540E+00 2192 4.689E+06 1.794E-03 1.540E+00 2193 4.689E+06 1.794E-03 1.540E+00 2194 4.689E+06 1.794E-03 1.540E+00 2195 4.689E+06 1.794E-03 1.540E+00 2197 4.689E+06 1.794E-03 1.479E+00 2199 4.689E+06 1.794E-03 1.366E+00 2199 4.689E+06 1.599E-03 1.312E+00 2200 4.689E+06 1.599E-03 1.312E+00 2201 4.689E+06 1.469E-03 1.164E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.1164E+00	2164			
2166 4.689E+06 5.498E-03 4.719E+00 2168 4.689E+06 5.283E-03 4.534E+00 2169 4.689E+06 5.075E-03 4.357E+00 2169 4.689E+06 5.075E-03 4.357E+00 2170 4.689E+06 4.876E-03 4.186E+00 2171 4.689E+06 4.685E-03 3.864E+00 2171 4.689E+06 4.502E-03 3.864E+00 21 4.689E+06 4.502E-03 3.712E+00 2174 4.689E+06 4.325E-03 3.712E+00 2175 4.689E+06 3.992E-03 3.427E+00 2176 4.689E+06 3.836E-03 3.293E+00 2177 4.689E+06 3.686E-03 3.164E+00 2178 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.269E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.141E-03 2.590E+00 2183 4.689E+06 3.141E-03 2.590E+00 2184 4.689E+06 3.017E-03 2.590E+00 2185 4.689E+06 2.785E-03 2.297E+00 2186 4.689E+06 2.676E-03 2.297F+00 2187 4.689E+06 2.676E-03 2.297F+00 2188 4.689E+06 2.785E-03 2.207E+00 2187 4.689E+06 2.676E-03 2.297E+00 2188 4.689E+06 2.676E-03 2.297E+00 2189 4.689E+06 2.776E-03 2.297E+00 2189 4.689E+06 2.776E-03 2.037E+00 2189 4.689E+06 2.191E-03 1.807E+00 2190 4.689E+06 2.023E-03 1.736E+00 2191 4.689E+06 2.023E-03 1.736E+00 2192 4.689E+06 1.943E-03 1.668E+00 2193 4.689E+06 1.794E-03 1.540E+00 2194 4.689E+06 1.794E-03 1.540E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.794E-03 1.540E+00 2197 4.689E+06 1.794E-03 1.540E+00 2199 4.689E+06 1.794E-03 1.540E+00 2199 4.689E+06 1.794E-03 1.366E+00 2199 4.689E+06 1.794E-03 1.366E+00 2199 4.689E+06 1.591E-03 1.366E+00 2200 4.689E+06 1.591E-03 1.312E+00 2200 4.689E+06 1.591E-03 1.312E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.1164E+00	2165	4.689E+06		
2167	2166	4.689E+06		
2168 4.689E+06 5.075E-03 4.357E+00 2170 4.689E+06 4.876E-03 4.186E+00 2171 4.689E+06 4.685E-03 4.022E+00 217 4.689E+06 4.502E-03 3.864E+00 21 4.689E+06 4.502E-03 3.712E+00 2174 4.689E+06 4.155E-03 3.567E+00 2175 4.689E+06 3.992E-03 3.427E+00 2176 4.689E+06 3.992E-03 3.427E+00 2177 4.689E+06 3.541E-03 3.164E+00 2178 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.541E-03 3.039E+00 2180 4.689E+06 3.141E-03 2.696E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.17E-03 2.391E+00 2183 4.689E+06 2.899E-03 2.499E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.785E-03 2.391E+00 2186 4.689E+06 2.571E-03 2.207E+00 </td <td>2167</td> <td>4.689E+06</td> <td></td> <td></td>	2167	4.689E+06		
21170	2168	4.689E+06		
2170	2169			
2171 4.689E+06 4.502E-03 3.864E+00 21 4.689E+06 4.325E-03 3.712E+00 2174 4.689E+06 4.155E-03 3.712E+00 2175 4.689E+06 3.992E-03 3.427E+00 2176 4.689E+06 3.836E-03 3.293E+00 2177 4.689E+06 3.686E-03 3.164E+00 2178 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.402E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 3.017E-03 2.590E+00 2184 4.689E+06 2.899E-03 2.391E+00 2185 4.689E+06 2.785E-03 2.391E+00 2186 4.689E+06 2.676E-03 2.297E+00 2187 4.689E+06 2.571E-03 2.207E+00 2188 4.689E+06 2.374E-03 2.207E+00 2189 4.689E+06 2.374E-03 2.207E+00 2189 4.689E+06 2.374E-03 2.207E+00 2189 4.689E+06 2.374E-03 2.037E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.191E-03 1.881E+00 2192 4.689E+06 2.191E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.550E+00 2194 4.689E+06 1.943E-03 1.668E+00 2195 4.689E+06 1.794E-03 1.6603E+00 2196 4.689E+06 1.794E-03 1.6603E+00 2197 4.689E+06 1.794E-03 1.603E+00 2198 4.689E+06 1.794E-03 1.540E+00 2199 4.689E+06 1.794E-03 1.366E+00 2199 4.689E+06 1.559E-03 1.312E+00 2199 4.689E+06 1.559E-03 1.312E+00 2199 4.689E+06 1.559E-03 1.312E+00 2100 4.689E+06 1.559E-03 1.312E+00 2101 4.689E+06 1.559E-03 1.312E+00 21020 4.689E+06 1.529E-03 1.312E+00 2101 4.689E+06 1.559E-03 1.312E+00 2101 4.689E+06 1.559E-03 1.312E+00 21020 4.689E+06 1.529E-03 1.312E+00 2101 4.689E+06 1.529E-03 1.312E+00 2101 4.689E+06 1.529E-03 1.312E+00 2101 4.689E+06 1.529E-03 1.312E+00 21020 4.689E+06 1.529E-03 1.312E+00 2101 4.689E+06 1.529E-03 1.312E+00 21020 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.411E-03 1.211E+00 2200 4.689E+06 1.529E-03 1.118E+00	2170			
21	2171			
2174				
2174 4.689E+06 3.992E-03 3.427E+00 2175 4.689E+06 3.896E-03 3.293E+00 2177 4.689E+06 3.686E-03 3.164E+00 2178 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.402E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 3.017E-03 2.590E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.785E-03 2.391E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.571E-03 2.207E+00 2188 4.689E+06 2.374E-03 2.121E+00 2189 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.191E-03 1.881E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 2.023E-03 1.736E+00 2194 4.689E+06 1.867E-03 1.668E+00 2195 4.689E+06 1.943E-03 1.668E+00 2196 4.689E+06 1.794E-03 1.540E+00 2197 4.689E+06 1.794E-03 1.479E+00 2198 4.689E+06 1.794E-03 1.479E+00 2199 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.591E-03 1.36EE+00 2101 4.689E+06 1.591E-03 1.366E+00 2102 4.689E+06 1.591E-03 1.211E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.118E+00				
2176				
2176 4.689E+06 3.686E-03 3.164E+00 2177 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.402E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.017E-03 2.590E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 2.899E-03 2.489E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.571E-03 2.297E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.374E-03 2.121E+00 2189 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.191E-03 1.881E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.943E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+				
2177 4.689E+06 3.541E-03 3.039E+00 2179 4.689E+06 3.402E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.866E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 2.899E-03 2.489E+00 2184 4.689E+06 2.676E-03 2.297E+00 2185 4.689E+06 2.571E-03 2.207E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.374E-03 2.037E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.374E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.023E-03 1.736E+00 2192 4.689E+06 1.943E-03 1.668E+00 2193 4.689E+06 1.794E-03 1.540E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+				
2178 4.689E+06 3.402E-03 2.920E+00 2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 2.899E-03 2.489E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.571E-03 2.297E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.374E-03 2.037E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.374E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.023E-03 1.736E+00 2192 4.689E+06 1.943E-03 1.668E+00 2193 4.689E+06 1.794E-03 1.540E+00 2195 4.689E+06 1.794E-03 1.540E+00 2197 4.689E+06 1.724E-03 1.479E+00 2198 4.689E+06 1.591E-03 1.312E+				_
2180 4.689E+06 3.269E-03 2.806E+00 2181 4.689E+06 3.141E-03 2.696E+00 2182 4.689E+06 3.017E-03 2.590E+00 2183 4.689E+06 2.899E-03 2.489E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.676E-03 2.297E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.374E-03 2.037E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.191E-03 1.881E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.736E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.794E-03 1.540E+00 2195 4.689E+06 1.794E-03 1.479E+00 2196 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.591E-03 1.312E+				=
2180				2.806E+00
2181				
2183 4.689E+06 2.899E-03 2.489E+00 2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.676E-03 2.297E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.470E-03 2.121E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.794E-03 1.603E+00 2195 4.689E+06 1.724E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.366E+00 2198 4.689E+06 1.591E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.356E-03 1.164E+				2.590 E +00
2184 4.689E+06 2.785E-03 2.391E+00 2185 4.689E+06 2.676E-03 2.297E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.470E-03 2.121E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.807E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.794E-03 1.540E+00 2195 4.689E+06 1.724E-03 1.479E+00 2196 4.689E+06 1.724E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.356E-03 1.261E+00 2201 4.689E+06 1.3156E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.164E		- · · ·		2.489E+00
2185 4.689E+06 2.676E-03 2.297E+00 2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.470E-03 2.121E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.807E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.540E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.312E+00 2198 4.689E+06 1.591E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00				2.391E+00
2186 4.689E+06 2.571E-03 2.207E+00 2187 4.689E+06 2.470E-03 2.121E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.807E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.366E+00 2198 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.3156E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00				2.297E+00
2187 4.689E+06 2.470E-03 2.121E+00 2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.366E+00 2198 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.3156E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00		_		
2188 4.689E+06 2.374E-03 2.037E+00 2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.366E+00 2198 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.3156E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00			2.470E-03	
2189 4.689E+06 2.281E-03 1.958E+00 2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.366E+00 2198 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.3156E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00			2.374E-03	
2190 4.689E+06 2.191E-03 1.881E+00 2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.591E-03 1.366E+00 2198 4.689E+06 1.591E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.3156E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00			2.281E-03	
2191 4.689E+06 2.105E-03 1.807E+00 2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.312E+00 2199 4.689E+06 1.469E-03 1.261E+00 2200 4.689E+06 1.411E-03 1.211E+00 2201 4.689E+06 1.356E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00				
2192 4.689E+06 2.023E-03 1.736E+00 2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.356E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00			2.105E-03	
2193 4.689E+06 1.943E-03 1.668E+00 2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.356E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00			2.023E-03	
2194 4.689E+06 1.867E-03 1.603E+00 2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.356E-03 1.164E+00 2202 4.689E+06 1.356E-03 1.118E+00			1.943E-03	
2195 4.689E+06 1.794E-03 1.540E+00 2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.356E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00			1.867E-03	
2196 4.689E+06 1.724E-03 1.479E+00 2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00			1.794E-03	
2197 4.689E+06 1.656E-03 1.421E+00 2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00			1.724E-03	
2198 4.689E+06 1.591E-03 1.366E+00 2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00				
2199 4.689E+06 1.529E-03 1.312E+00 2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00 2102 4.689E+06 1.356E-03 1.118E+00			1.591E-03	
2200 4.689E+06 1.469E-03 1.261E+00 2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00				
2201 4.689E+06 1.411E-03 1.211E+00 2202 4.689E+06 1.356E-03 1.164E+00				
2202 4.689E+06 1.356E-03 1.164E+00				
22 ₄ 4.689E+06 1.303E-03 1.118E+00	2202			
	2 2 _[4.689E+06	1.303E-03	T.TT8E+00

Scree: C:\PROJECTS\PAGELL~1\TITLEV.PRM

Model Parameters

Lo : 100.00 m^3 / Mg ***** User Mode Selection ***** k : 0.0400 1/yr ***** User Mode Selection *****

NMOC : 924.00 ppmv ***** User Mode Selection *****

Methane: 55.0000 % volume

Carbon Dioxide : 45.0000 % volume

Landfill Parameters

Landfill type : No Co-Disposal

Year Opened: 1972 Current Year: 1999 Closure Year: 2004

Capacity : 4689000 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 269331.89 Mg/year

Model Results

======		 NMOC Em	ission Rate	
Year	Refuse In Place (Mg)	(Mg/yr)	(Cubic m/yr)	=====
1973 1974 1975 1976 1977 1978 10 15 1981 1982 1983 1984	9.972E+04 1.994E+05 2.992E+05 3.989E+05 4.986E+05 5.983E+05 6.980E+05 7.977E+05 8.975E+05 9.972E+05 1.097E+06	2.402E+00 4.710E+00 6.927E+00 9.057E+00 1.110E+01 1.307E+01 1.496E+01 1.678E+01 1.852E+01 2.020E+01 2.181E+01 2.335E+01	6.701E+02 1.314E+03 1.933E+03 2.527E+03 3.098E+03 3.647E+03 4.174E+03 4.680E+03 5.167E+03 5.634E+03 6.083E+03 6.515E+03	
1985 1986	1.296E+06 1.396E+06	2.484E+01 2.627E+01	6.930E+03 7.328E+03	

1977	4.986E+05	1.110E+01	3.098E+03
1978	5.983E+05	1.307E+01	3.647E+03
10'	6.980E+05	1.496E+01	4.174E+03
15	7.977E+05	1.678E+01	4.680E+03
1981	8.975E+05	1.852E+01	5.167E+03
1982	9.972E+05	2.020E+01	5.634E+03
1983	1.097E+06	2.181E+01	6.083E+03
1984	1.197E+06	2.335E+01	6.515E+03
1985	1.296E+06	2.484E+01	6.930E+03
1986	1.396E+06	2.627E+01	7.328E+03
1987	1.496E+06	2.764E+01	7.711E+03
1988	1.595E+06	2.896E+01	8.079E+03
1989	1.695E+06	3.022E+01	8.432E+03
1990	1.795E+06	3.144E+01	8.771E+03
1991	1.895E+06	3.261E+01	9.098E+03
1992	1.994E+06	3.373E+01	9.411E+03
1993	2.094E+06	3.481E+01	9.712E+03
1994	2.194E+06	3.585E+01	1.000E+04
1995	2.194E+06	3.685E+01	1.028E+04
1996	2.234E+06	4.127E+01	1.151E+04
1997	2.801E+06	4.601E+01	1.284E+04
1998	3.077E+06	5.086E+01	1.419E+04
1998	3.342E+06	5.525E+01	1.541E+04
2000	3.612E+06	5.957E+01	1.662E+04
2001	3.612E+06 3.881E+06	6.372E+01	1.778E+04
2001	4.150E+06	6.771E+01	1.889E+04
2002	4.420E+06	7.154E+01	1.996E+04
2003	4.689E+06	7.523E+01	2.099E+04
2004	4.689E+06	7.228E+01	2.016E+04
2005	4.689E+06 4.689E+06	6.944E+01	1,937E+04
2006	4.689E+06	6.672E+01	1.861E+04
2007		6.410E+01	1.788E+04
2008	4.689E+06	6.159E+01	1.718E+04
	4.689E+06	5.917E+01	1.651E+04
20	4.689E+06	5.685E+01	1.586E+04
26	4.689E+06	5.462E+01	1.524E+04
2012	4.689E+06	O.4025+UI	1.0220101

			1.464E+04
2000	4,689E+06	5.248E+01	
2	4.689E+06	5,043E+01	1.407E+04
		4.845E+01	1.352E+04
2015	4.689E+06		1.299E+04
2016	4.689E+06	4.655E+01	
	4.689E+06	4.472E+01	1.248E+04
2017			1.199E+04
2018	4.689E+06	4.297E+01	1.1995-04
2019	4.689E+06	4.128E+01	1.152E+04
		3.967E+01	1.107E+04
2020	4.689E+06		1.063E+04
2021	4.689E+06	3.811E+01	
	4.689E+06	3.662E+01	1.022E+04
2022			9.815E+03
2023	4.689E+06	3.518E+01	
2024	4.689E+06	3,380E+01	9.430E+03
		3.248E+01	9.060E+03
2025	4.689E+06		8.705E+03
2026	4.689E+06	3.120E+01	
	4.689E+06	2.998E+01	8.364E+03
2027		2.880E+01	8.036E+03
2028	4.689E+06		-
2029	4.689E+06	2.767E+01	7.720E+03
		2.659E+01	7.418E+03
2030	4.689E+06		7.127E+03
2031	4.689E+06	2.555E+01	
	4.689E+06	2.454E+01	6.847E+03
2032		2.358E+01	6.579E+03
2033	4.689E+06		
2034	4.689E+06	2.266E+01	6.321E+03
		2.177E+01	6.073E+03
2035	4.689E+06		
2036	4.689E+06	2.092E+01	5.835E+03
	4.689E+06	2.010E+01	5.606E+03
2037			5.386E+03
2038	4.689E+06	1.931E+01	
2039	4.689E+06	1.855E+01	5,175E+03
		1.782E+01	4.972E+03
2040	4.689E+06		
2041	4.689E+06	1.712E+01	4.777E+03
	4.689E+06	1.645E+01	4.590E+03
2042			4.410E+03
2043	4.689E+06	1.581E+01	
20	4.689E+06	1.519E+01	4.237E+03
		1.459E+01	4.071E+03
2 L	4.689E+06		3.911E+03
2046	4.689E+06	1.402E+01	
2047	4.689E+06	1.347E+01	3.758E+03
		1.294E+01	3.611E+03
2048	4.689E+06		
2049	4.689E+06	1.243E+01	3.469E+03
	4.689E+06	1.195E+01	3.333E+03
2050		The state of the s	3.202E+03
2051	4.689E+06	1.148E+01	
2052	4.689E+06	1.103E+01	3.077E+03
		1.060E+01	2.956E+03
2053	4.689E+06 .		2.840E+03
2054	4.689E+06	1.018E+01	
2055	4.689E+06	9.781E+00	2.729E+03
		9.398E+00	2.622E+03
2056	4.689E+06		
2057	4.689E+06	9.029E+00	2.519E+03
	4.689E+06	8.675E+00	2.420E+03
2058			2.325E+03
2059	4.689E+06	8.335E+00	
2060	4.689E+06	8.008E+00	2.234E+03
		7,694E+00	2.147E+03
2061	4.689E+06		
2062	4.689E+06	7.393E+00	2.062E+03
		7.103E+00	1.982E+03
2063	4.689E+06		1.904E+03
2064	4.689E+06	6.824E+00	
2065	4.689E+06	6.557E+00	1.829E+03
		6.300E+00	1.757E+03
2066	4.689E+06		1.689E+03
2067	4.689E+06	6.053E+00	
2068	4.689E+06	5,815E+00	1.622E+03
		5.587E+00	1.559E+03
2069	4.689E+06		
2070	4.689E+06	5.368E+00	1.498E+03
		5.158E+00	1.439E+03
2071	4.689E+06		1.382E+03
2072	4.689E+06	4.955E+00	
2073	4.689E+06	4.761E+00	1.328E+03
			1.276E+03
2074	4.689E+06	4.574E+00	
20	4.689E+06	4.395E+00	1.226E+03
1		4.223E+00	1.178E+03
20	4.689E+06		1.132E+03
2077	4.689E+06	4.057E+00	1.134E+U3

205	4.689E+06	3.898E+00	1.087E+03
20,	4.689E+06	3.745E+00	1.045E+03
20	4.689E+06	3,598E+00	1.004E+03
2080	4.689E+06	3.457E+00	9.645E+02
2081	4.689E+06	3.322E+00	9.267E+02
2082	4.689E+06	3.191E+00	8.904E+02
2083	4.689E+06	3.066E+00	8.555E+02
2084	4.689E+06	2.946E+00	8.219E+02
2085	4.689E+06	2.831E+00	7.897E+02
2086	4.689E+06	2.720E+00	7.587E+02
2087	4.689E+06	2.613E+00	7.290E+02
2088	4.689E+06	2.511E+00	7.004E+02
2089	4.689E+06	2.412E+00	6.729E+02
2090	4.689E+06	2.317E+00	6.465E+02
2091	4.689E+06	2.227E+00	6.212E+02
2092	4.689E+06	2.139E+00	5.968E+02
2093		2.055E+00	5.734E+02
2094	4.689E+06	1.975E+00	5.509E+02
2095	4.689E+06	1.897E+00	5.293E+02
2096	4.689E+06	1.823E+00	5.086E+02
2097	4.689E+06	1.752E+00	4.886E+02
2098	4.689E+06	1.683E+00	4.695E+02
2099	4.689E+06	1.617E+00	4.511E+02
2100	4.689E+06	1.553E+00	4.334E+02
2101	4.689E+06	1.493E+00	4.164E+02
2102	4.689E+06	1.434E+00	4.001E+02
2103	4.689E+06	1.378E+00	3.844E+02
2104	4.689E+06	1.324E+00	3.693E+02
2105	4.689E+06	1.272E+00	3.548E+02
2106	4.689E+06	1.222E+00	3.409E+02
2107	4.689E+06	1.2225+00 1.174E+00	3.275E+02
2108	4.689E+06	1.1748+00	3.147E+02
21	4.689E+06	1.084E+00	3.024E+02
21.	4.689E+06	1.084E+00	2.905E+02
2111	4.689E+06	1.000E+00	2.791E+02
2112	4.689E+06		2.682E+02
2113	4.689E+06	9.613E-01	2.502E+02
2114	4.689E+06	9.236E-01	2.476E+02
2115	4.689E+06	8.874E-01 8.526E-01	2.378E+02
2116	4.689E+06	8.191E-01	2.285E+02
2117	4.689E+06		2.196E+02
2118	4.689E+06	7.870E-01	2.110E+02
2119	4.689E+06	7.562E-01	2.027E+02
2120	4.689E+06	7.265E-01	1.947E+02
2121	4.689E+06	6.980E-01	1.871E+02
2122	4.689E+06	6.706E-01	1.798E+02
2123	4.689E+06	6.444E-01	1.727E+02
2124	4.689E+06	6.191E-01	1.659E+02
2125	4.689E+06	5.948E-01	1.594E+02
2126	4.689E+06	5.715E-01	1.534E+02
2127	4.689E+06	5.491E-01	1.472E+02
2128	4.689E+06	5.275E-01	1.472E+02 1.414E+02
2129	4.689E+06	5.069E-01	1.359E+02
2130	4.689E+06	4.870E-01	1.305E+02
2131	4.689E+06	4.679E-01	
2132	4.689E+06	4.495E-01	1.254E+02
2133	4.689E+06	4.319E-01	1.205E+02
2134	4.689E+06	4.150E-01	1.158E+02
2135	4.689E+06	3.987E-01	1.112E+02
2136	4.689E+06	3.831E-01	1.069E+02
2137	4.689E+06	3.681E-01	1.027E+02
2138	4.689E+06	3.536E-01	9.866E+01
2139	4.689E+06	3.398E-01	9.479E+01
21/	4.689E+06	3.264E-01	9.107E+01
21-	4.689E+06	3.136E-01	8.750E+01
2142	4.689E+06	3.013E-01	8.407E+01
4 J. T. Z	¥.0075100		

	4.689E+06	2.895E-01	8.077E+01
214	4.689E+06	2.782E-01	7.761E+01
21.	4.689E+06	2.673E-01	7.456E+01
2145	4.689E+06	2.568E-01	7.164E+01
2146	4.689E+06	2.467E-01	6.883E+01
2147	4.689E+06	2.370E-01	6.613E+01
2148	4.689E+06	2.277E-01	6.354E+01
2149	4.689E+06	2,188E-01	6.105E+01
2150	4.689E+06	2.102E-01	5.865E+01
2151	4.689E+06	2.020E-01	5.635E+01
2152	4.689E+06	1.941E-01	5.414E+01
2153	4.689E+06	1.865E-01	5.202E+01
2154	4.6895+00	1.792E-01	4.998E+01
2155	4.689E+06	1.721E-01	4.802E+01
2156	4.689E+06	1.654E-01	4.614E+01
2157	4.689E+06	1.589E-01	4.433E+01
2158	4.689E+06	1.527E-01	4.259E+01
2159	4.689E+06	1.467E-01	4.092E+01
2160	4.689E+06	1.409E-01	3.932E+01
2161	4.689E+06	1.354E-01	3.777E+01
2162	4.689E+06	1.301E-01	3.629E+01
2163	4.689E+06	1.250E-01	3.487E+01
2164	4.689E+06	1.201E-01	3.350E+01
2165	4.689E+06	1.154E-01	3.219E+01
2166	4.689E+06	1.109E-01	3.093E+01
2167	4.689E+06	1.065E-01	2.971E+01
2168	4.689E+06	1.023E-01	2.855E+01
2169	4.689E+06	9.832E-02	2.743E+01
2170	4.689E+06	9.447E-02	2.635E+01
2171	4.689E+06	9.076E-02	2.532E+01
2172	4.689E+06	8.720E-02	2.433E+01
2173	4.689E+06	8.378E-02	2.337E+01
21	4.689E+06	8.050E-02	2.246E+01
21.	4.689E+06	7.734E-02	2.158E+01
2176	4.689E+06	7.431E-02	2.073E+01
2177	4.689E+06	7.140E-02	1.992E+01
2178	4.689E+06	6.860E-02	1.914E+01
2179	4.689E+06	6.591E-02	1.839E+01
2180	4.689E+06	6.332E-02	1.767E+01
2181	4.689E+06	6.332E-02 6.084E-02	1.697E+01
2182	4.689E+06	5.845E-02	1.631E+01
2183	4.689E+06	5.616E-02	1.567E+01
2184	4.689E+06	5.396E-02	1.505E+01
2185	4.689E+06	5.184E-02	1.446E+01
2186	4.689E+06	4.981E-02	1.390E+01
2187	4.689E+06	4.786E-02	1.335E+01
2188	4.689E+06	4.598E-02	1.283E+01
2189	4.689E+06	4.596E-02 4.418E-02	1.233E+01
2190	4.689E+06	4,416E-02 4,245E-02	1.184E+01
2191	4.689E+06		1.138E+01
2192	4.689E+06	4.078E-02	1.093E+01
2193	4.689E+06	3.918E-02	1.050E+01
2194	4.689E+06	3.765E-02	1.009E+01
2195	4.689E+06	3.617E-02	9.695E+00
2196	4.689E+06	3.475E-02	9.315E+00
2197	4.689E+06	3,339E-02	8.950E+00
2198	4.689E+06	3.208田-02	8.599E+00
2199	4.689E+06	3.082E-02	8.262E+00
2200	4.689E+06	2.961E-02	7.938E+00
2201	4.689E+06	2.845E-02	7.538E+00 7.627E+00
2202	4.689E+06	2.734E-02	7.827E+00
2203	4.689E+06	2.627E-02	1.321ETVV
	- · · - · · · · · · · · · · · · · · · ·		

```
Source: C:\PROJECTS\PAGELL~1\TITLEV.PRM
```

Model Parameters

Lo : 100.00 m^3 / Mg ***** User Mode Selection ***** k : 0.0400 1/yr ***** User Mode Selection *****

NMOC : 924.00 ppmv ***** User Mode Selection *****

Methane : 55.0000 % volume

Carbon Dioxide: 45.0000 % volume
Air Pollutant: VOCs (based on Tier 2 NMOC of 924 ppmv)

Molecular Wt = 86.18 Concentration = 360.360000 ppmV

Landfill Parameters

Landfill type : No Co-Disposal

Year Opened: 1972 Current Year: 1999 Closure Year: 2004

Capacity : 4689000 Mg

2010

4.689E+06

Average Acceptance Rate Required from

Current Year to Closure Year : 269331.89 Mg/year

Model	Results	
MUCH	K C D U L C D	

Model Results				
======				NMOC of 924 ppmv) Emission R
			(based on Tier 2	(Cubic m/yr)
Year	Refuse In Place (Mg)	(Mg/yr)	
			9.368E-01	 2.613E+02
1973	9.972E+04		1.837E+00	5.124E+02
1974	1.994E+05	*	2.702E+00	7.537E+02
1975	2.992E+05		3.532E+00	9.855E+02
1976	3.989E+05		4.331E+00	1.208E+03
19""	4.986E+05		5.098E+00	1.422E+03
1:	5.983E+05		5.834E+00	1.628E+03
1979	6.980E+05		6.542E+00	1.825E+03
1980	7.977E+05		7.223E+00	2.015E+03
1981	8.975E+05		7.876E+00	2.197E+03
1982	9.972E+05		8.504E+00	2.373E+03
1983	1.097E+06		9.108E+00	2.541E+03
1984	1.197E+06	•	9.106E+00 9.687E+00	2.703E+03
1985	1.296E+06		9.687E+00	2.703E703 2.858E+03
1986	1.396E+06			3.007E+03
1987	1.496E+06		1.078E+01	3.151E+03
1988	1.595E+06		1.129E+01	3.288E+03
1989	1.695E+06		1.179E+01	3.421E+03
1990	1.795E+06		1.226E+01	3.548E+03
1991	1.895E+06		1.272E+01	3.670E+03
1992	1.994E+06		1.316E+01	3.788E+03
1993	2.094E+06		1.358E+01	3.901E+03
1994	2.194E+06		1.398E+01	4.009E+03
1995	2.294E+06		1.437E+01	4.490E+03
1996	2.537E+06		1.609E+01	5.006E+03
1997	2.801E+06		1.795E+01	5.533E+03
1998	3.077E+06		1.983E+01	6.011E+03
1999	3.342E+06		2.155E+01	6.011E+03 6.481E+03
2000	3.612E+06		2.323E+01	6.481E+03 6.933E+03
2001	3.881E+06		2.485E+01	6.933E+03 7.367E+03
2002	4.150E+06		2.641E+01	7.784E+03
2003	4.420E+06		2.790E+01	8.185E+03
2004	4.689E+06		2.934E+01	7.864E+03
2005	4.689E+06		2.819E+01	
2006	4.689E+06		2.708E+01	7.555±+03
2007	4.689E+06		2.602E+01	7.259E+03
20	4.689E+06		2.500E+01	6.975E+03
20	4.689E+06		2.402E+01	6.701E+03

2.308E+01

6,438E+03

	4 (007.06	2,217E+01	6.186E+03
2011	4.689E+06	2.130E+01	5.943E+03
2	4.689E+06 4.689E+06	2.047E+01	5.710E+03
2013	4.689E+06	1.967E+01	5,486E+03
2014	4.689E+06	1.889E+01	5.271E+03
2015	****	1,815E+01	5.065E+03
2016	4.689E+06	1.744E+01	4.866E+03
2017	4.689E+06 4.689E+06	1.676E+01	4.675E+03
2018	4.689E+06 4.689E+06	1.610E+01	4.492E+03
2019	4.689E+06	1.547E+01	4.316E+03
2020	4.689E+06	1.486E+01	4.147E+03
2021	4.689E+06 4.689E+06	1.428E+01	3.984E+03
2022	4.689E+06	1.372E+01	3.828E+03
2023	4.689E+06	1.318E+01	3.678E+03
2024	4.689E+06	1.267E+01	3.533E+03
2025	4.689E+06	1.217E+01	3.395E+03
2026	4.689E+06	1.169E+01	3.262E+03
2027	4.689E+06	1.123E+01	3.134E+03
2028 2029	4.689E+06	1.079E+01	3.011E+03
	4.689E+06	1.037E+01	2.893E+03
2030 2031	4.689E+06	9.963E+00	2.779E+03
	4.689E+06	9.572E+00	2.671E+03
2032	4.689E+06	9.197E+00	2.566E+03
2033	4.689E+06	8.836E+00	2.465E+03
2034	4.689E+06	8.490E+00	2.369E+03
2035 2036	4.689E+06	8.157E+00	2.276E+03
2030	4.689E+06	7.837E+00	2.186E+03
2038	4.689E+06	7.530E+00	2.101E+03
2039	4.689E+06	7.235E+00	2.018E+03
2040	4.689E+06	6.951E+00	1.939E+03
2041	4.689E+06	6.678E+00	1.863E+03
2041	4.689E+06	6.417E+00	1.790E+03
26	4.689E+06	6.165E+00	1.720E+03
2044	4.689E+06	5.923E+00	1.652E+03
2045	4.689E+06	5.691E+00	1.588E+03
2046	4.689E+06	5.468E+00	1.525E+03
2047	4.689E+06	5.253 E +00	1.466E+03
2048	4.689E+06	5.047E+00	1.408E+03
2049	4.689E+06	4.850E+00	1.353E+03
2050	4.689E+06	4.659E+00	1.300E+03
2051	4.689E+06	4.477E+00	1.249E+03
2052	4.689E+06	4.301E+00	1.200E+03
2053	4.689E+06	4.132E+00	1.153E+03
2054	4.689E+06	3.970E+00	1.108E+03
2055	4.689E+06	3.815E+00	1.064E+03
2056	4.689E+06	3.665E+00	1.023E+03
2057	4.689E+06	3.521E+00	9.824E+02
2058	4.689E+06	3.383E+00	9.439E+02
2059	4.689E+06	3.251E+00	9.069E+02
2060	4.689E+06	3.123E+00	8.713E+02
2061	4.689E+06	3.001E+00	8.372E+02
2062	4.689E+06	2.883E+00	8.043E+02
2063	4.689E+06	2.770E+00	7.728E+02
2064	4.689E+06	2.661E+00	7.425E+02
2065	4.689E+06	2.557E+00	7.134E+02
2066	4.689E+06	2.457E+00	6.854E+02
2067	4.689E+06	2.361E+00	6.585E+02
2068	4.689E+06	2.268E+00	6.327E+02
2069	4.689E+06	2.179E+00	6.079E+02
2070	4.689E+06	2.094E+00	5.841E+02
2071	4.689E+06	2.011E+00	5,612E+02 5.392E+02
2072	4.689E+06	1.933E+00	5.392E+02 5.180E+02
20	4.689E+06	1.857E+00	4.977E+02
20.	4.689E+06	1.784E+00	4.782E+02
2075	4.689E+06	1.714E+00	4./QZETUZ

0.01.5	4.689E+06	1.647E+00	4.594E+02
2,7 7	4.689E+06	1.582E+00	4.414E+02
	4.689E+06	1.520E+00	4.241E+02
2078		1.461E+00	4.075E+02
2079	4.689E+06	1.403E+00	3.915E+02
2080	4.689E+06	1.348E+00	3.762E+02
2081	4,689E+06	1.348E+00 1.295E+00	3.614E+02
2082	4.689E+06		3.814E+02 3.472E+02
2083	4.689 E +06	1.245E+00	
2084	4.689E+06	1.196E+00	3.336E+02
2085	4.689E+06	1.149E+00	3.205E+02
2086	4.689E+06	1.104E+00	3.080E+02
2087	4.689E+06	1.061E+00	2.959E+02
2088	4.689E+06	1.019E+00	2.843E+02
2089	4.689E+06	9.791E-01	2.732E+02
2090	4.689E+06	9.407E-01	2.624E+02
2091	4.689E+06	9.038E-01	2.522E+02
2092	4,689E+06	8.684E-01	2.423E+02
2093	4.689E+06	8.343E-01	2.328E+02
2094	4.689E+06	8.016E-01	2.236E+02
	4.689E+06	7.702E-01	2.149E+02
2095	4.689E+06	7.400E-01	2.064E+02
2096		7.110E-01	1.983E+02
2097	4.689E+06	6.831E-01	1.906E+02
2098	4.689E+06		1.831E+02
2099	4.689E+06	6.563E-01	1.831E+02 1.759E+02
2100	4.689E+06	6,306E-01	
2101	4.689E+06	6.059E-01	1.690E+02
2102	4.689E+06	5.821E-01	1.624E+02
2103	4.689E+06	5.593E-01	1.560E+02
2104	4.689E+06	5.373E-01	1.499E+02
2105	4.689E+06	5.163E-01	1.440E+02
2106	4.689E+06	4.960E-01	1.384E+02
21	4.689E+06	4.766E-01	1.330E+02
21	4.689E+06	4.579E-01	1.277E+02
2109	4.689E+06	4.399E-01	1.227E+02
2110	4.689E+06	4.227E-01	1.179E+02
2111	4.689E+06	4.061E-01	1.133E+02
2112	4.689E+06	3.902E-01	1.089E+02
2112	4.689E+06	3.749E-01	1.046E+02
2114	4.689E+06	3.602E-01	1.005E+02
	4.689E+06	3.461E-01	9.655E+01
2115	4.689E+06	3.325E-01	9.276E+01
2116	4.689E+06	3.195E-01	8.912E+01
2117		3.069E-01	8.563E+01
2118	4.689E+06	2.949E-01	8.227E+01
2119	4.689E+06	2.833E-01	7.905E+01
2120	4.689E+06		7.595E+01
2121	4.689E+06	2.722E-01	7.393E+01 7.297E+01
2122	4.689E+06	2.616E-01	
2123	4.689E+06	2.513E-01	7.011E+01
2124	4.689E+06	2.414E-01	6.736E+01
2125	4.689E+06	2,320E-01	6.472E+01
2126	4.689E+06	2.229E-01	6.218E+01
2127	4.689E+06	2.141E-01	5.974E+01
2128	4.689E+06	2.057E-01	5.740E+01
2129	4.689E+06	1.977E-01	5.515E+01
2130	4.689E+06	1.899E-01	5.299E+01
2131	4.689E+06	1.825E-01	5.091E+01
2132	4.689E+06	1.753E-01	4.891E+01
2133	4.689E+06	1.684E-01	4.699E+01
2134	4.689E+06	1.618E-01	4.515E+01
2135	4.689E+06	1.555E-01	4.338E+01
2136	4.689E+06	1.494E-01	4.168E+01
2137		1.435E-01	4.005E+01
	4.689E+06	1.435E-01 1.379E-01	3.848E+01
21/ 21/	4.689E+06	1.325E-01	3.697E+01
	4.689E+06	1.273E-01	3.552E+01
2140	4.689E+06	1.2/35-01	3,5544,64

1				
2 4.6898+06	2141	4.689E+06	1.223E-01	
2144	2		1,175E-01	3,279E+01
1.089E-01 1.089E-01 2.908F-01 2.908F-01 2.146 4.689E-06 1.001E-01 2.794F-01 2.908F-01 2.147 4.689E-06 9.622E-02 2.684F-01 2.148 4.689E-06 9.622E-02 2.684F-01 2.148 4.689E-06 9.245E-02 2.579E-01 2.1579E-01 2			1.129E-01	3.150E+01
2145			1.085E-01	3.027E+01
1146			1.042E-01	2.908E+01
147				2.794E+01
2149				2.684E+01
149			9.245E-02	2.579E+01
1.50			8.882E-02	2.478E+01
2151 4.689E+06 9.199E-02 2.287E+01 2152 4.689E+06 7.876E-02 2.112E+01 2153 4.689E+06 7.569E-02 2.112E+01 2154 4.689E+06 7.569E-02 2.112E+01 2154 4.689E+06 7.272E-02 2.029E+01 2155 4.689E+06 6.787E-02 1.949E+01 2155 4.689E+06 6.713E-02 1.949E+01 2155 4.689E+06 6.713E-02 1.799E+01 2155 4.689E+06 6.713E-02 1.799E+01 2155 4.689E+06 6.197E-02 1.799E+01 2155 4.689E+06 5.954E-02 1.799E+01 2159 4.689E+06 5.954E-02 1.799E+01 2159 4.689E+06 5.720E-02 1.596E+01 2160 4.689E+06 5.720E-02 1.596E+01 2161 4.689E+06 5.720E-02 1.596E+01 2162 4.689E+06 5.281E-02 1.473E+01 2163 4.689E+06 5.281E-02 1.473E+01 2164 4.689E+06 5.281E-02 1.473E+01 2164 4.689E+06 5.074E-02 1.360E+01 2166 4.689E+06 4.875E-02 1.360E+01 2166 4.689E+06 4.875E-02 1.360E+01 2166 4.689E+06 4.875E-02 1.360E+01 2166 4.689E+06 4.833E-02 1.360E+01 2166 4.689E+06 4.833E-02 1.360E+01 2166 4.689E+06 4.833E-02 1.360E+01 2166 4.689E+06 4.835E-02 1.360E+01 2166 4.689E+06 4.333E-02 1.255E+01 2167 4.689E+06 4.333E-02 1.255E+01 2169 4.689E+06 3.991E-02 1.158E+01 2169 4.689E+06 3.991E-02 1.158E+01 2170 4.689E+06 3.835E-02 1.158E+01 2170 4.689E+06 3.835E-02 1.158E+01 2171 4.689E+06 3.835E-02 1.070E+01 2171 4.689E+06 3.835E-02 1.778E+00 2177 4.689E+06 3.268E-02 9.488E+00 2177 4.689E+06 3.268E-02 9.488E+00 2177 4.689E+06 3.268E-02 9.16E+00 2177 4.689E+06 3.268E-02 9.268E+00 2178 4.689E+06 2.269E-02 9.488E+00 2178 4.689E+06 2.269E-02 9.568E+00 2189 4.689E+06 2.269E-02 9.568E+00 2189 4.689E+06 1.268E-02 3.398E+00 2199 4.689E+06 1.268E-02				2.381E+01
2152				2.287E+01
18				2.198E+01
2155				2.112E+01
2155				2.029E+01
2155 4.689E+06 6.713E-02 1.873E+01 2157 4.689E+06 6.450E-02 1.799E+01 2159 4.689E+06 5.954E-02 1.661E+01 2159 4.689E+06 5.954E-02 1.536E+01 2160 4.689E+06 5.720E-02 1.536E+01 2161 4.689E+06 5.496E-02 1.533E+01 2162 4.689E+06 5.496E-02 1.533E+01 2163 4.689E+06 5.496E-02 1.473E+01 2164 4.689E+06 5.074E-02 1.415E+01 2164 4.689E+06 4.684E-02 1.307E+01 2165 4.689E+06 4.684E-02 1.307E+01 2166 4.689E+06 4.500E-02 1.255E+01 2167 4.689E+06 4.500E-02 1.255E+01 2168 4.689E+06 4.500E-02 1.255E+01 2169 4.689E+06 4.154E-02 1.159E+01 2170 4.689E+06 3.835E-02 1.159E+01 2171 4.689E+06 3.835E-02 1.070E+01 2171 4.689E+06 3.684E-02 9.875E+00 2174 4.689E+06 3.684E-02 9.875E+00 2174 4.689E+06 3.668E-02 9.488E+00 2175 4.689E+06 3.139E-02 9.488E+00 2176 4.689E+06 3.169E-02 9.488E+00 2177 4.689E+06 3.169E-02 9.488E+00 2178 4.689E+06 3.169E-02 9.488E+00 2179 4.689E+06 3.169E-02 9.175E+00 2171 4.689E+06 3.68E-02 9.116E+00 2175 4.689E+06 3.686E-02 9.16E+00 2176 4.689E+06 3.169E-02 9.185E+00 2177 4.689E+06 3.169E-02 9.185E+00 2178 4.689E+06 3.169E-02 9.185E+00 2179 4.689E+06 3.06E-02 9.175E+00 2179 4.689E+06 2.784E-02 7.76E+00 2179 4.689E+06 2.784E-02 7.76E+00 2179 4.689E+06 2.784E-02 7.78E+00 2180 4.689E+06 2.784E-02 7.78E+00 2181 4.689E+06 2.784E-02 7.78E+00 2182 4.689E+06 2.784E-02 7.78E+00 2183 4.689E+06 2.784E-02 7.78E+00 2184 4.689E+06 2.78E-02 7.463E+00 2185 4.689E+06 2.78E-02 7.463E+00 2186 4.689E+06 2.78E-02 7.78E+00 2187 4.689E+06 2.78E-02 7.78E+00 2189 4.689E+06 2.78E-02 7.78E+00 2189 4.689E+06 2.78E-02 7.78E+00 2191 4.689E+06 1.723E-02 5.003E+00 2192 4.689E+06 1.793E-02 5.003E+00 2193 4.689E+06 1.793E-02 5.003E+00 2194 4.689E+06 1.793E-02 5.003E+00 2195 4.689E+06 1.793E-02 5.003E+00 2196 4.689E+06 1.793E-02 5.003E+00 2197 4.689E+06 1.793E-02 5.003E+00 2198 4.689E+06 1.793E-02 5.003E+00 2199 4.689E+06 1.793E-02 5.003E+00 2199 4.689E+06 1.793E-02 5.003E+00 2199 4.689E+06 1.793E-02 3.349E+00 2199 4.689E+06 1.793E-02 3.349E+00 2199 4.689E+06 1.795E-02 3.349E+00 2199 4.689E+06 1.795E-02 3.349E+00 2199 4.689E+06 1.795E-02 3.349E+00 2				
2157				
2158				
2159				
2160				
1.689E+06				
2161 4.689E+06 5.281E-02 1.473E+01 2163 4.689E+06 5.074E-02 1.415B+01 2163 4.689E+06 4.875E-02 1.360E+01 2165 4.689E+06 4.684E-02 1.307E+01 2166 4.689E+06 4.500E-02 1.255E+01 2166 4.689E+06 4.500E-02 1.255E+01 2167 4.689E+06 4.500E-02 1.255E+01 2168 4.689E+06 4.154E-02 1.255E+01 2169 4.689E+06 3.991E-02 1.115E+01 2170 4.689E+06 3.991E-02 1.113E+01 2170 4.689E+06 3.684E-02 1.070E+01 2171 4.689E+06 3.684E-02 1.070E+01 2171 4.689E+06 3.684E-02 1.070E+01 2171 4.689E+06 3.540E-02 9.875E+00 217-4 6.899E+06 3.540E-02 9.875E+00 217-4 6.899E+06 3.268E-02 9.116E+00 2175 4.689E+06 3.016E-02 8.758E+00 2176 4.689E+06 3.016E-02 8.758E+00 2177 4.689E+06 3.016E-02 8.758E+00 2177 4.689E+06 3.016E-02 8.758E+00 2177 4.689E+06 2.675E-02 7.768E+00 2178 4.689E+06 2.784E-02 7.768E+00 2189 4.689E+06 2.784E-02 7.768E+00 2189 4.689E+06 2.784E-02 7.768E+00 2189 4.689E+06 2.570E-02 7.768E+00 2189 4.689E+06 2.570E-02 7.71EB+00 2181 4.689E+06 2.570E-02 7.71EB+00 2181 4.689E+06 2.570E-02 7.71EB+00 2182 4.689E+06 2.570E-02 7.71EB+00 2182 4.689E+06 2.570E-02 7.77EB+00 2182 4.689E+06 2.733E-02 6.620E+00 2182 4.689E+06 2.79BE-02 5.871E+00 2184 4.689E+06 2.79BE-02 5.871E+00 2189 4.689E+06 2.104E-02 5.871E+00 2199 4.689E+06 1.793E-02 4.807E+00 2199 4.689E+06 1.793E-02 4.807E+00 2199 4.689E+06 1.559E-02 4.638E+00 2199 4.689E+06 1.559E-02 4.638E+00 2199 4.689E+06 1.559E-02 3.73BE-02 4.2638E+00 2199 4.689E+06 1.559E-02 3.73BE-02 4.2638E+00 2199 4.689E+06 1.559E-02 3.73BE+00 2199 4.689E+06 1.559E-02 3.				
2162 4.689E+06 5.074E-02 1.415E+01 2164 4.689E+06 4.875E-02 1.360E+01 2165 4.689E+06 4.875E-02 1.307E+01 2166 4.689E+06 4.500E-02 1.255E+01 2167 4.689E+06 4.500E-02 1.255E+01 2168 4.689E+06 4.500E-02 1.255E+01 2169 4.689E+06 3.991E-02 1.159E+01 2170 4.689E+06 3.991E-02 1.159E+01 2171 4.689E+06 3.684E-02 1.070E+01 2171 4.689E+06 3.684E-02 9.875E+00 2171 4.689E+06 3.540E-02 9.875E+00 2174 4.689E+06 3.540E-02 9.875E+00 2175 4.689E+06 3.139E-02 9.116E+00 2176 4.689E+06 3.139E-02 9.116E+00 2177 4.689E+06 3.139E-02 8.758E+00 2178 4.689E+06 3.016E-02 8.415E+00 2177 4.689E+06 3.016E-02 8.415E+00 2177 4.689E+06 2.898E-02 8.08E5+00 2178 4.689E+06 2.898E-02 7.768E+00 2179 4.689E+06 2.898E-02 7.768E+00 2180 4.689E+06 2.675E-02 7.463B+00 2181 4.689E+06 2.675E-02 7.463B+00 2182 4.689E+06 2.675E-02 7.463B+00 2183 4.689E+06 2.373E-02 6.620E+00 2184 4.689E+06 2.373E-02 6.620E+00 2185 4.689E+06 2.373E-02 6.620E+00 2186 4.689E+06 2.373E-02 5.890E+00 2187 4.689E+06 2.373E-02 6.620E+00 2188 4.689E+06 2.373E-02 6.620E+00 2189 4.689E+06 2.373E-02 6.620E+00 2180 4.689E+06 2.373E-02 6.620E+00 2181 4.689E+06 2.373E-02 6.620E+00 2182 4.689E+06 2.373E-02 6.620E+00 2183 4.689E+06 2.373E-02 6.620E+00 2184 4.689E+06 2.373E-02 6.620E+00 2185 4.689E+06 2.373E-02 6.620E+00 2186 4.689E+06 2.393E-02 5.420E+00 2187 4.689E+06 2.373E-02 6.620E+00 2188 4.689E+06 2.590E-02 5.641E+00 2189 4.689E+06 1.943E-02 5.420E+00 2190 4.689E+06 1.943E-02 5.420E+00 2191 4.689E+06 1.95E-02 4.807E+00 2192 4.689E+06 1.95E-02 4.807E+00 2193 4.689E+06 1.95E-02 4.263E+00 2194 4.689E+06 1.55E-02 3.935E+00 2195 4.689E+06 1.55E-02 3.935E+00 2196 4.689E+06 1.55E-02 3.935E+00 2197 4.689E+06 1.55E-02 3.935E+00 2198 4.689E+06 1.55E-02 3.935E+00 2199 4.689E+06 1.55E-02 3.935E+00 2199 4.689E+06 1.55E-02 3.935E+00 2199 4.689E+06 1.55E-02 3.935E+00 2199 4.689E+06 1.55E-02 3.35E+00 2199 4.689E+06 1.55E-02 3.35E+00 2199 4.689E+06 1.55E-02 3.22E+00 2199 4.689E+06 1.55E-02 3.22E+00 2200 4.689E+06 1.55E-02 3.22E+00 2201 4.689E+06 1.25E-02 3.35E+00				
2164				 -
2165				
2166				
2167				
1168				
2169				
1.070E+01 1.070E+01 1.070E+01 1.070E+01 1.111 1.080E+06 3.835E-02 1.070E+01 1.028E+01 1.028E+0				
1.028E+01				
217				
21				
2174				
2175				-
2176				
2177				
2177				
2179				
2180				
2181				
2182				
2183				
2184				
2185				
2186				
2187				
2188				
2189 4.689E+06 1.793E-02 5.003E+00 2190 4.689E+06 1.723E-02 4.807E+00 2191 4.689E+06 1.655E-02 4.618E+00 2192 4.689E+06 1.591E-02 4.437E+00 2193 4.689E+06 1.528E-02 4.263E+00 2194 4.689E+06 1.468E-02 4.096E+00 2195 4.689E+06 1.355E-02 3.781E+00 2196 4.689E+06 1.302E-02 3.633E+00 2197 4.689E+06 1.251E-02 3.490E+00 2199 4.689E+06 1.202E-02 3.354E+00 2200 4.689E+06 1.155E-02 3.222E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00				
2190				
2191 4.689E+06 1.655E-02 4.618E+00 2192 4.689E+06 1.591E-02 4.437E+00 2193 4.689E+06 1.528E-02 4.263E+00 2194 4.689E+06 1.468E-02 4.096E+00 2195 4.689E+06 1.355E-02 3.781E+00 2196 4.689E+06 1.302E-02 3.633E+00 2197 4.689E+06 1.251E-02 3.490E+00 2199 4.689E+06 1.202E-02 3.354E+00 2200 4.689E+06 1.155E-02 3.222E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00				
2192				
2193				
2194	2192	4.689E+06		
2195	2193	4.689E+06	— : :	
2196 4.689E+06 1.355E-02 3.781E+00 2197 4.689E+06 1.302E-02 3.633E+00 2198 4.689E+06 1.251E-02 3.490E+00 2199 4.689E+06 1.202E-02 3.354E+00 2200 4.689E+06 1.155E-02 3.222E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00				
2197 4.689E+06 1.302E-02 3.633E+00 2198 4.689E+06 1.251E-02 3.490E+00 2199 4.689E+06 1.202E-02 3.354E+00 2200 4.689E+06 1.155E-02 3.222E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00		4.689E+06		
2198 4.689E+06 1.251E-02 3.490E+00 2199 4.689E+06 1.202E-02 3.354E+00 2200 4.689E+06 1.155E-02 3.222E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00		4.689E+06		
2199 4.689E+06 1.202E-02 3.354E+00 2200 4.689E+06 1.155E-02 3.222E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00		4.689E+06		
2200 4.689E+06 1.155E-02 3.22E+00 2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00	2198	4.689E+06		
2201 4.689E+06 1.110E-02 3.096E+00 2202 4.689E+06 1.066E-02 2.974E+00		4.689E+06		
2202 4.689E+06 1.066E-02 2.974E+00		4.689E+06		
4.0050-00	2201	4.689E+06		
22 4.689E+06 1.024E-02 2.858E+00		4.689E+06	1.066E-02	
	22/	4.689E+06	1.024E-02	2,858E+00

```
Sc ce: C:\PROJECTS\PAGELL~1\TITLEV.PRM
Model Parameters
Lo : 100.00 m^3 / Mg ***** User Mode Selection *****
k : 0.0400 1/yr ***** User Mode Selection ****
NMOC : 924.00 ppmv ***** User Mode Selection *****
Methane: 55.0000 % volume
Carbon Dioxide : 45.0000 % volume
Air Pollutant : Toluene (HAP/VOC) (AP-42, Supp. D)
                Concentration = 39.300000 ppmV
Molecular Wt = 92.13
```

Landfill Parameters

Landfill type : No Co-Disposal

Year Opened: 1972 Current Year: 1999 Closure Year: 2004

Capacity : 4689000 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 269331.89 Mg/year

=====		=======================================	=======================================		
	Model Results				
		Toluene (HAP/VOC) (AP-4 (Mq/yr)	2, Supp. D) Emission Rate (Cubic m/yr)		
Year	Refuse In Place (Mg)				
		1.092E-01	2.850E+01		
1973	9.972E+04	2.141E-01	5.588E+01		
1974	1.994E+05	3.150E-01	8.219E+01		
1975	2.992E+05	4.118E-01	1.075E+02		
1976	3.989E+05	5.049E-01	1.318E+02		
19	4.986E+05	5.943E-01	1.551E+02		
15	5.983E+05	6.802E-01	1.775E+02		
1979	6.980E+05		1.991E+02		
1980	7.977E+05	7.628E-01 8.421E-01	2.198E+02		
1981	8.975 E +05		2.396E+02		
1982	9.972E+05	9.183E-01	2.587E+02		
1983	1.097E+06	9.915E-01	2.771E+02		
1984	1.197E+06	1.062E+00	2.77EF02 2.947E+02		
1985	1.296E+06	1.129E+00			
1986	1.396E+06	1.194E+00	3.117E+02		
1987	1.496E+06	1.257E+00	3.280E+02		
1988	1.595E+06	1.317E+00	3.436E+02		
1989	1.695E+06	1.374E+00	3.586E+02		
1990	1.795E+06	1.430E+00	3.731E+02		
1991	1.895E+06	1.483E+00	3.869E+02		
1992	1.994E+06	1.534E+00	4.003E+02		
1993	2.094E+06	1.583E+00	4.131E+02		
1994	2.194E+06	1.630E+00	4.254E+02		
1995	2.294E+06	1.675E+00	4.372E+02		
1996	2.537E+06	1.876E+00	4.897E+02		
1997	2.801E+06	2.092E+00	5.460E+02		
1998	3.077E+06	2.312E+00	6.034E+02		
1999	3.342E+06	2.512E+00	6.556E+02		
2000	3.612E+06	2.709E+00	7.068E+02		
2001	3.881E+06	2.897E+00	7.561E+02		
2002	4.150E+06	3.079E+00	8.034E+02		
2003	4.420E+06	3.253E+00	8.489E+02		
2004	4.689E+06	3.420E+00	8.926E+02		
2005	4.689E+06	3.286E+00	8.576E+02		
2006	4.689E+06	3.157E+00	8.240E+02		
2007	4.689E+06	3.034E+00	7.917E+02		
20	4.689E+06	2.915E+00	7.606E+02		
20 ك	4.689E+06	2.800E+00	7.308E+02		
2010	4.689E+06	2.691E+00	7.021E+02		
	1.0002				

	4.689E+06	2.585E+00	6.746E+02	
20		2.484E+00	6.482E+02	
2 t	4.689E+06	2.386E+00	6.228E+02	
2013	4.689E+06		5.983E+02	
2014	4.689E+06	2.293E+00	5.749E+02	
2015	4.689E+06	2.203E+00		
2016	4.689E+06	2.116E+00	5.523E+02	
	4.689E+06	2.034E+00	5.307E+02	
2017	4.689E+06	1.954E+00	5.099E+02	
2018		1.877E+00	4.899E+02	
2019	4.689E+06	1.804E+00	4.707E+02	
2020	4.689E+06		4.522E+02	
2021	4.689E+06	1.733E+00		
2022	4.689E+06	1.665E+00	4.345E+02	
2023	4.689E+06	1.600E+00	4.174E+02	
2024	4.689E+06	1.537E+00	4.011E+02	
	4.689E+06	1.477E+00	3.853E+02	
2025		1.419E+00	3.702E+02	
2026	4.689E+06	1.363E+00	3.557E+02	
2027	4.689E+06		3.418E+02	
2028	4.689E+06	1.310E+00	3.284E+02	
2029	4,689E+06	1.258E+00		
2030	4.689E+06	1.209E+00	3.155E+02	
2031	4.689E+06	1.162E+00	3.031E+02	
	4.689E+06	1.116E+00	2.912E+02	
2032		1.072E+00	2.798E+02	
2033	4.689E+06	1.030E+00	2.688E+02	
2034	4.689E+06		2.583E+02	
2035	4.689E+06	9.898E-01	2.482E+02	
2036	4.689E+06	9.510E-01		
2037	4.689E+06	9.137E-01	2.384E+02	
2038	4.689E+06	8.779E-01	2.291E+02	
2039	4.689E+06	8.435E-01	2.201E+02	
		8.104E-01	2.115E+02	
2040	4.689E+06	7.786E-01	2.032E+02	
2041	4.689E+06		1.952E+02	
20	4.689E+06	7.481E-01	1.876E+02	
20.	4.689E+06	7.188E-01		
2044	4.689E+06	6.906E-01	1.802E+02	
2045	4.689E+06	6.635E-01	1.731E+02	
2046	4.689E+06	6.375E-01	1.664E+02	
	4.689E+06	6.125E-01	1.598E+02	
2047		5.885E-01	1.536E+02	
2048	4.689E+06	5.654E-01	1.475E+02	
2049	4.689E+06		1.418E+02	
2050	4.689E+06	5.432E-01	1.362E+02	
2051	4.689E+06	5.219E-01		
2052	4.689E+06	5.015E-01	1.309E+02	
2053	4.689E+06	4.818E-01	1.257E+02	
2054	4.689E+06	4,629E-01	1.208E+02	
		4.448E-01	1.161E+02	
2055	4.689E+06	4.273E-01	1.115E+02	
2056	4.689E+06	4.106E-01	1.071E+02	
2057	4.689E+06		1.029E+02	
2058	4.689E+06	3.945E-01	9.890E+01	
2059	4.689E+06	3.790E-01		
2060	4.689E+06	3.641E-01	9.503E+01	
2061	4.689E+06	3.499E-01	9.130E+01	
2062	4.689E+06	3.361E-01	8.772E+01	
		3.230E-01	8.428E+01	
2063	4.689E+06	3.103E-01	8.098E+01	
2064	4.689E+06	2.981E-01	7.780E+01	
2065	4.689E+06		7.475E+01	
2066	. 4.689E+06	2.864E-01		
2067	4.689E+06	2.752E-01	7.182E+01	
2068	4.689E+06	2.644E-01	6.900E+01	
2069	4.689E+06	2.540E-01	6.630E+01	
2070	4.689E+06	2.441E-01	6.370E+01	
		2.345E-01	6.120E+01	
2071	4.689E+06		5.880E+01	
2072	4.689E+06	2.253E-01	5.649E+01	
20(4.689E+06	2.165E-01		
20 ⁵ / .	4.689E+06	2.080E-01	5.428E+01	
2075	4.689E+06	1.998E-01	5.215E+01	
· -	· · · ·			

		1.920E-01	5.011E+01
20	4.689E+06		
2(2(4.689E+06	1.845E-01	4.814E+01
2078	4.689E+06	1.772E-01	4.625E+01
		1.703E-01	4.444E+01
2079	4.689E+06	1.636E-01	4.270E+01
2080	4.689E+06		4.102E+01
2081	4.689E+06	1.572E-01	3.941E+01
2082	4.689E+06	1.510E-01	
2083	4.689E+06	1.451E-01	3.787E+01
	4.689E+06	1.394E-01	3.638E+01
2084		1.340E-01	3.496E+01
2085	4.689E+06		3.359E+01
2086	4.689E+06	1.287E-01	
2087	4.689E+06	1.237E-01	3.227E+01
2088	4.689E+06	1.188E-01	3.100E+01
	4.689E+06	1.142E-01	2.979E+01
2089		1.097E-01	2.862E+01
2090	4.689E+06	1.054E-01	2.750E+01
2091	4.689E+06		2.642E+01
2092	4.689E+06	1.012E-01	
2093	4.689E+06	9.727E-02	2.538E+01
	4.689E+06	9.346E-02	2.439E+01
2094		8.979E-02	2.343E+01
2095	4.689E+06	8.627E-02	2.251E+01
2096	4.689E+06		2.163E+01
2097	4.689E+06	8.289E-02	
2098	4.689E+06	7.964E-02	2.078E+01
2099	4.689E+06	7.652E-02	1.997E+01
	4.689E+06	7.352E-02	1.919E+01
2100		7.063E-02	1.843E+01
2101	4.689E+06	6.786E-02	1.771E+01
2102	4.689E+06		1.702E+01
2103	4.689E+06	6.520E-02	
2104	4.689E+06	6.265E-02	1.635E+01
2105	4.689E+06	6.019E-02	1.571E+01
2106	4.689E+06	5.783E-02	1.509E+01
	4.689E+06	5.556E-02	1.450E+01
2.7		5.338E-02	1.393E+01
21	4.689E+06	5,129E-02	1.339E+01
2109	4.689E+06		1.286E+01
2110	4.689E+06	4.928E-02	1.236E+01
2111	4.689E+06	4.735E-02	
2112	4.689E+06	4.549E-02	1.187E+01
2113	4.689E+06	4.371E-02	1.141E+01
	4.689E+06	4.199E-02	1.096E+01
2114		4.035E-02	1.053E+01
2115	4.689E+06	3.876E-02	1.012E+01
2116	4.689E+06		9.720E+00
2117	4.689E+06	3.724E-02	
2118	4.689E+06	3.578E-02	9.338E+00
2119	4.689E+06	3.438E-02	8.972E+00
2120	4.689E+06	3.303E-02	8.621E+00
	4.689E+06	3.174E-02	8.283E+00
2121		3.049E-02	7.958E+00
2122	4.689E+06	2.930E-02	7.646E+00
2123	4.689E+06		7.346E+00
2124	4.689E+06	2.815E-02	
2125	4.689E+06	2.705E-02	7.058E+00
2126	4.689E+06	2,598E-02	6.781E+00
2127	4.689E+06	2.497E-02	6.515E+00
		2,399E-02	6.260E+00
2128	4.689E+06	2.305E-02	6.014E+00
2129	4.689E+06	2.303E 02 2.214E-02	5.779E+00
2130	4.689E+06		
2131	4.689E+06	2.127E-02	5.552E+00
2132	4.689E+06	2.044E-02	5.334E+00
2133	4.689E+06	1.964E-02	5.125E+00
		1.887E-02	4.924E+00
2134	4.689E+06	1.813E-02	4.731E+00
2135	4.689E+06	1.742E-02	4.546E+00
2136	4.689E+06		
2137	4.689E+06	1.674E-02	4.367E+00
2 J	4.689E+06	1.608E-02	4.196E+00
رر21	4.689E+06	1.545E-02	4.032E+00
2140	4.689E+06	1.484E-02	3.873E+00
~ 4 4 0	T.0001400		

24	4.689E+06	1.426E-02	3,722E+00
2 1	4.689E+06	1.370E-02	3.576E+00
21	4.689E+06	1.316E-02	3.435E+00
2143 2144	4.689E+06	1.265E-02	3.301E+00
2144	4.689E+06	1.215E-02	3.171E+00
2145	4.689E+06	1.168E-02	3.047E+00
2147	4,689E+06	1.122E-02	2.927E+00
2147	4.689E+06	1.078E-02	2.813E+00
2149	4.689E+06	1.036E-02	2.702E+00
2150	4.689E+06	9.949E-03	2.596E+00
2151	4.689E+06	9.559E-03	2.495E+00
2152	4.689E+06	9.185E-03	2.397E+00
2153	4.689E+06	8.824E-03	2.303E+00
2154	4.689E+06	8.478E~03	2.213E+00
2155	4.689E+06	8.146E-03	2.126E+00
2156	4.689E+06	7.827E-03	2.042E+00
2157	4.689E+06	7.520E-03	1.962E+00
2158	4.689E+06	7.225E-03	1.885E+00
2159	4.689E+06	6.941E-03	1.811E+00
2160	4.689E+06	6.669E-03	1.740E+00
2161	4.689E+06	6.408E-03	1.672E+00
2162	4.689E+06	6.157E-03	1.607E+00
2163	4.689E+06	5.915E-03	1.544E+00
2164	4.689E+06	5.683E-03	1.483E+00
2165	4.689E+06	5.460E-03	1.425E+00
2166	4.689E+06	5.246E-03	1.369E+00
2167	4.689E+06	5.041E-03	1.315E+00
2168	4.689E+06	4.843E-03	1.264E+00
2169	4.689E+06	4.653E-03	1.214E+00
2170	4.689E+06	4.471E-03	1.167E+00
2171	4.689E+06	4.295E-03	1.121E+00
21	4.689E+06	4.127E-03	1.077E+00
21	4.689E+06	3.965E-03	1.035E+00
2174	4.689E+06	3.810E-03	9.942E-01
2175	4.689E+06	3.660E-03	9.552E-01
2176	4.689E+06	3.517E-03	9.177E-01
2177	4.689E+06	3.379E-03	8.817E-01
2178	4.689E+06	3.246E-03	8.472E-01
2179	4.689E+06	3.119E-03	8.140E-01
2180	4.689E+06	2.997E-03	7.820E-01
2181	4.689E+06	2.879E-03	7.514E-01
2182	4.689E+06	2.766E-03	7.219E-01 6.936E-01
2183	4.689E+06	2.658E-03	6.664E-01
2184	4.689E+06	2.554E-03	6.403E-01
2185	4.689E+06	2.454E-03	6.152E-01
2186	4.689E+06	2.357E-03	5.152E-01 5.911E-01
2187	4.689E+06	2.265E-03	5.679E-01
2188	4.689E+06	2.176E-03	5.456E-01
2189	4.689E+06	2.091E-03 2.009E-03	5.242E-01
2190	4.689E+06	2.009E-03 1.930E-03	5.037E-01
2191	4.689E+06	- · · - · · · · -	4.839E-01
2192	4.689E+06	1.854E-03 1.782E-03	4.649E-01
2193	4.689E+06	1.712E-03	4.467E-01
2194	4.689E+06	1.72E-03 1.645E-03	4.292E-01
2195	4.689E+06	1.580E-03	4.124E-01
2196	4.689E+06	1.518E-03	3.962E-01
2197	4.689E+06	1.518E-03 1.459E-03	3.807E-01
2198	4.689E+06	1.459E-03 1.401E-03	3.657E-01
2199	4.689E+06	1.401E-03 1.347E-03	3.514E-01
2200	4.689E+06	1.347E-03	3.376E-01
2201	4.689E+06	1.243E-03	3.244E-01
2202	4.689E+06	1.194E-03	3.117E-01
2	4.689E+06	I.IJ4D-UJ	J. 44.4 04

Attachment C

Fugitive Dust Emissions Source Description

Fugitive Dust Particulate Matter Emissions

Various approaches to landfill emissions estimates are specified for different regulatory applicability determinations. Federal solid waste facility criteria are established by RCRA Subtitle - D and implemented by the Illinois EPA Bureau of Land, Section 814 Regulations. These regulations establish certain operational requirements involving heavy construction and material handling. Fugitive emissions may be generated from heavy construction activities, which include: cell development, borrow sources, stockpiles, and operations such as the application of daily, long-term or final cover soils.

Since the Part 70 potential to emit for this particular source category does not include fugitive emissions for sources other than landfill gas NMOC, detailed calculations of these activities and associated non-road equipment emissions are not included in this analysis. In fact, certain equipment are classified as trivial; and with the application of controls such as vegetation or watering on a routine basis, calculations typically demonstrate insignificant levels of emissions.

In addition to air criteria, operational provisions of the solid waste regulations require significant controls necessary to minimize odor and fugitive dust emissions while satisfying the regulatory objectives so as to not constitute or contribute to a nuisance, a health hazard, or a safety hazard.

As mentioned previously, Unit ID# 2 (fugitive emissions from landfill) includes fugitive dust emissions which must be included with this Part 70 permit application. Fugitive dust results from waste transport vehicles using unpaved site haul roads and is expressed as PM_{10} (particulate matter with a diameter $10\mu m$). Calculations used to determine the site's fugitive PM_{10} emissions are shown below.

Task: Determine fugitive dust emissions (expressed as PM₁₀) from site haul roads.

Solution:

In order to calculate the fugitive dust emissions, an emission factor was determined using the following empirical expression (AP-42, Fifth Ed., Sec. 13.2.2.2, Equ. 1):

$$E = k(5.9) \left(\frac{s}{12}\right) \left(\frac{S}{30}\right) \left(\frac{W}{3}\right)^{0.7} \left(\frac{w}{4}\right)^{0.5} \left(\frac{365 - p}{365}\right) \quad \text{lb/VMT} \qquad \text{(Equation B-4)}$$

where: E = Emission factor, pounds per vehicle mile traveled (lb/VMT);

k = Particle size multiplier (dimensionless);

s = Silt content of road surface material (%);

S = Mean vehicle speed, miles per hour (mph);

W = Mean vehicle weight (tons);

w = Mean number of wheels; and

p = Number of days with at least 0.01 in. of precipitation per year.

The site specific emission factor was then determined based on the following parameters:

k = 0.36 for aerodynamic particle size 10µm (PM₁₀) (AP-42, Fifth Ed., Sec. 13.2.2.2);

s=2.5% (assumed). Site roads are very tightly compacted gravel and display little or no dust according to site personnel. This value is <6.4% which is the mean silt content for municipal solid waste disposal routes (AP-42, Fifth Ed., Table 13.2.2-1);

S = 20 mph (assumed);

W = 15 tons tare, 30 tons gross;

w = 6 (majority of haul trucks are dual rear axle garbage trucks); and

p = 127 (estimated from AP-42, Fifth Ed., Fig. 13.2.2-1, for Winnebago County, IL).

Equation B-4 was used to calculate two site specific emission factors—one for loaded trucks taking garbage to the working face of the landfill (gross), and another for empty trucks leaving the working face (tare):

$$E_{gross} = (0.36)(5.9) \left(\frac{2.5}{12}\right) \left(\frac{20}{30}\right) \left(\frac{30}{3}\right)^{0.7} \left(\frac{6}{4}\right)^{0.5} \left(\frac{365-127}{365}\right) \quad \text{lb/VMT}$$

$$E_{gross} = 1.18 \, \text{lb/VMT}$$

$$E_{tare} = (0.36)(5.9) \left(\frac{2.5}{12}\right) \left(\frac{20}{30}\right) \left(\frac{15}{3}\right)^{0.7} \left(\frac{6}{4}\right)^{0.5} \left(\frac{365-127}{365}\right) \quad \text{lb/VMT}$$

$$E_{tare} = 0.73 \, \text{lb/VMT}$$

Because the haul length for both gross haul and tare haul are equal, the two emission factors were averaged and the resulting emission factor was used for a round-trip haul:

$$E = \frac{E_{gross} + E_{tare}}{2} = \frac{1.18 + 0.73}{2}$$
 ib/VMT
$$E = 0.96$$
 lb/VMT

Finally, the annual fugitive PM₁₀ emissions from unpaved haul roads were determined with the conservative assumption that all haul vehicles will use the longest haul road (2,670 feet one-way) shown on—Site Layout; therefore, one round trip haul is 5,340 feet in length. Based on information from site personnel that approximately 75 trucks haul garbage per day, and 302 operating days in 1998 (IEPA's 1998 Solid Waste Facility Annual Report), the annual fugitive emissions were calculated as follows:

Annual vehicle miles traveled =
$$(5,340 \text{ ft}) \left(\frac{1 \text{ mile}}{5,280 \text{ ft}}\right) \left(\frac{75 \text{ vehicles}}{\text{day}}\right) \left(\frac{302 \text{ days}}{1 \text{ year}}\right) = 22,907 \text{ VMT/yr}$$

Annual fugitive PM₁₀ emissions =
$$(0.96 \frac{\text{lbs}}{\text{VMT}})(22,907 \frac{\text{VMT}}{\text{yr}})(\frac{1 \text{ ton}}{2000 \text{ lbs}})$$

Fugitive
$$PM_{10}$$
 emissions = 11.0 tpy

Attachment D

AP-42 Section 2.4

AP-42 Supplement D

2.4 MUNICIPAL SOLID WASTE LANDFILLS

2.4.1 General 1-4

A municipal solid waste (MSW) landfill unit is a discrete area of land or an excavation that receives household waste, and that is not a land application unit, surface impoundment, injection well, or waste pile. An MSW landfill unit may also receive other types of wastes, such as commercial solid waste, nonhazardous sludge, and industrial solid waste. The municipal solid waste types potentially accepted by MSW landfills include (most landfills accept only a few of the following categories):

- MSW,
- · Household hazardous waste,
- Municipal sludge,
- · Municipal waste combustion ash,
- Infectious waste,
- Waste tires,
- · Industrial non-hazardous waste,
- Conditionally exempt small quantity generator (CESQG) hazardous waste,
- · Construction and demolition waste,
- · Agricultural wastes,
- · Oil and gas wastes, and
- Mining wastes.

In the United States, approximately 57 percent of solid waste is landfilled, 16 percent is incinerated, and 27 percent is recycled or composted. There were an estimated 2,500 active MSW landfills in the United States in 1995. These landfills were estimated to receive 189 million megagrams (Mg) (208 million tons) of waste annually, with 55 to 60 percent reported as household waste, and 35 to 45 percent reported as commercial waste.

2.4.2 Process Description^{2,5}

There are three major designs for municipal landfills. These are the area, trench, and ramp methods. All of these methods utilize a three step process, which includes spreading the waste, compacting the waste, and covering the waste with soil. The trench and ramp methods are not commonly used, and are not the preferred methods when liners and leachate collection systems are utilized or required by law. The area fill method involves placing waste on the ground surface or landfill liner, spreading it in layers, and compacting with heavy equipment. A daily soil cover is spread over the compacted waste. The trench method entails excavating trenches designed to receive a day's worth of waste. The soil from the excavation is often used for cover material and wind breaks. The ramp method is typically employed on sloping land, where waste is spread and compacted similar to the area method, however, the cover material obtained is generally from the front of the working face of the filling operation.

Modern landfill design often incorporates liners constructed of soil (i.e., recompacted elay), or synthetics (i.e., high density polyethylene), or both to provide an impermeable barrier to leachate (i.e., water that has passed through the landfill) and gas migration from the landfill.

2.4.3 Control Technology^{1,2,6}

The Resource Conservation and Recovery Act (RCRA) Subtitle D regulations promulgated on October 9, 1991 require that the concentration of methane generated by MSW landfills not exceed 25 percent of the lower explosive limit (LEL) in on-site structures, such as scale houses, or the LEL at the facility property boundary.

The New Source Performance Standards (NSPS) and Emission Guidelines for air emissions from MSW landfills for certain new and existing landfills were published in the Federal Register on March 1, 1996. The regulation requires that Best Demonstrated Technology (BDT) be used to reduce MSW landfill emissions from affected new and existing MSW landfills emitting greater than or equal to 50 Mg/yr (55 tons/yr) of non-methane organic compounds (NMOCs). The MSW landfills that are affected by the NSPS/Emission Guidelines are each new MSW landfill, and each existing MSW landfill that has accepted waste since November 8, 1987, or that has capacity available for future use. The NSPS/Emission Guidelines affect landfills with a design capacity of 2.5 million Mg (2.75 million tons) or more. Control systems require: (1) a well-designed and well-operated gas collection system, and (2) a control device capable of reducing NMOCs in the collected gas by 98 weight-percent.

Landfill gas (LFG) collection systems are either active or passive systems. Active collection systems provide a pressure gradient in order to extract LFG by use of mechanical blowers or compressors. Passive systems allow the natural pressure gradient created by the increase in pressure created by LFG generation within the landfill to mobilize the gas for collection.

LFG control and treatment options include (1) combustion of the LFG, and (2) purification of the LFG. Combustion techniques include techniques that do not recover energy (i.e., flares and thermal incinerators), and techniques that recover energy (i.e., gas turbines and internal combustion engines) and generate electricity from the combustion of the LFG. Boilers can also be employed to recover energy from LFG in the form of steam. Flares involve an open combustion process that requires oxygen for combustion, and can be open or enclosed. Thermal incinerators heat an organic chemical to a high enough temperature in the presence of sufficient oxygen to oxidize the chemical to carbon dioxide (CO₂) and water. Purification techniques can also be used to process raw landfill gas to pipeline quality natural gas by using adsorption, absorption, and membranes.

2.4.4 Emissions^{2,7}

Methane (CH₄) and CO₂ are the primary constituents of landfill gas, and are produced by microorganisms within the landfill under anaerobic conditions. Transformations of CH₄ and CO₂ are mediated by microbial populations that are adapted to the cycling of materials in anaerobic environments. Landfill gas generation, including rate and composition, proceeds through four phases. The first phase is aerobic [i.e., with oxygen (O₂) available] and the primary gas produced is CO₂. The second phase is characterized by O₂ depletion, resulting in an anaerobic environment, where large amounts of CO₂ and some hydrogen (H₂) are produced. In the third phase, CH₄ production begins, with an accompanying reduction in the amount of CO₂ produced. Nitrogen (N₂) content is initially high in landfill gas in the first phase, and declines sharply as the landfill proceeds through the second and third phases. In the fourth phase, gas production of CH₄, CO₂, and N₂ becomes fairly steady. The total time and phase duration of gas generation varies with landfill conditions (i.e., waste composition, design management, and anaerobic state).

Typically, LFG also contains a small amount of non-methane organic compounds (NMOC). This NMOC fraction often contains various organic hazardous air pollutants (HAP), greenhouse gases (GHG), and compounds associated with stratospheric ozone depletion. The NMOC fraction also contains volatile organic compounds (VOC). The weight fraction of VOC can be determined by subtracting the weight fractions of individual compounds that are non-photochemically reactive (i.e., negligibly-reactive organic compounds as defined in 40 CFR 51.100).

The rate of emissions from a landfill is governed by gas production and transport mechanisms. Production mechanisms involve the production of the emission constituent in its vapor phase through vaporization, biological decomposition, or chemical reaction. Transport mechanisms involve the transportation of a volatile constituent in its vapor phase to the surface of the landfill, through the air boundary layer above the landfill, and into the atmosphere. The three major transport mechanisms that enable transport of a volatile constituent in its vapor phase are diffusion, convection, and displacement.

2.4.4.1 Uncontrolled Emissions — To estimate uncontrolled emissions of the various compounds present in landfill gas, total landfill gas emissions must first be estimated. Uncontrolled CH₄ emissions may be estimated for individual landfills by using a theoretical first-order kinetic model of methane production developed by the EPA.⁸ This model is known as the Landfill Air Emissions Estimation model, and can be accessed from the Office of Air Quality Planning and Standards Technology Transfer Network Website (OAQPS TTN Web) in the Clearinghouse for Inventories and Emission Factors (CHIEF) technical area (URL http://www.epa.gov/ttn/chief). The Landfill Air Emissions Estimation model equation is as follows:

$$Q_{CH_4} = L_o R (e^{-kc} - e^{-kt})$$
 (1)

where:

 e^{-1}

 Q_{CH_4} = Methane generation rate at time t, m³/yr;

 L_0 = Methane generation potential, m³ CH₄/Mg refuse;

R = Average annual refuse acceptance rate during active life, Mg/yr;

e = Base log, unitless;

k = Methane generation rate constant, yr⁻¹;

c = Time since landfill closure, yrs (c = 0 for active landfills); and

t = Time since the initial refuse placement, yrs.

It should be noted that the model above was designed to estimate LFG generation and not LFG emissions to the atmosphere. Other fates may exist for the gas generated in a landfill, including capture and subsequent microbial degradation within the landfill's surface layer. Currently, there are no data that adequately address this fate. It is generally accepted that the bulk of the gas generated will be emitted through cracks or other openings in the landfill surface.

Site-specific landfill information is generally available for variables R, c, and t. When refuse acceptance rate information is scant or unknown, R can be determined by dividing the refuse in place by the age of the landfill. If a facility has documentation that a certain segment (cell) of a landfill received <u>only</u> nondegradable refuse, then the waste from this segment of the landfill can be excluded from the calculation of R. Nondegradable refuse includes concrete, brick, stone, glass, plaster, wallboard, piping, plastics, and metal objects. The average annual acceptance rate should only be estimated by this method when there is inadequate information available on the actual average acceptance rate. The time variable, t, includes the total number of years that the refuse has been in place (including the number of years that the landfill has accepted waste and, if applicable, has been closed).

Values for variables L_{\circ} and k must be estimated. Estimation of the potential CH_{4} generation capacity of refuse (L_{\circ}) is generally treated as a function of the moisture and organic content of the refuse. Estimation of the CH_{4} generation constant (k) is a function of a variety of factors, including moisture, pH, temperature, and other environmental factors, and landfill operating conditions. Specific CH_{4} generation constants can be computed by the use of EPA Method 2E (40 CFR Part 60 Appendix A).

The Landfill Air Emission Estimation model includes both regulatory default values and recommended AP-42 default values for $L_{\rm o}$ and k. The regulatory defaults were developed for compliance purposes (NSPS/Emission Guideline). As a result, the model contains conservative $L_{\rm o}$ and k default values in order to protect human health, to encompass a wide range of landfills, and to encourage the use of site-specific data. Therefore, different $L_{\rm o}$ and k values may be appropriate in estimating landfill emissions for particular landfills and for use in an emissions inventory.

Recommended AP-42 defaults include a k value of 0.04/yr for areas recieving 25 inches or more of rain per year. A default k of 0.02/yr should be used in drier areas (<25 inches/yr). An L_o value of 100 m³/Mg (3,530 ft³/ton) refuse is appropriate for most landfills. Although the recommended default k and L_o are based upon the best fit to 21 different landfills, the predicted methane emissions ranged from 38 to 492% of actual, and had a relative standard deviation of 0.85. It should be emphasized that in order to comply with the NSPS/Emission Guideline, the regulatory defaults for k and L_o must be applied as specified in the final rule.

When gas generation reaches steady state conditions, LFG consists of approximately 40 percent by volume CO₂, 55 percent CH₄, 5 percent N₂ (and other gases), and trace amounts of NMOCs. Therefore, the estimate derived for CH₄ generation using the Landfill Air Emissions Estimation model can also be used to represent CO₂ generation. Addition of the CH₄ and CO₂ emissions will yield an estimate of total landfill gas emissions. If site-specific information is available to suggest that the CH₄ content of landfill gas is not 55 percent, then the site-specific information should be used, and the CO₂ emission estimate should be adjusted accordingly.

Most of the NMOC emissions result from the volatilization of organic compounds contained in the landfilled waste. Small amounts may be created by biological processes and chemical reactions within the landfill. The current version of the Landfill Air Emissions Estimation model contains a proposed regulatory default value for total NMOC of 4,000 ppmv, expressed as hexane. However, available data show that there is a range of over 4,400 ppmv for total NMOC values from landfills. The proposed regulatory default value for NMOC concentration was developed for regulatory compliance purposes and to provide the most cost-effective default values on a national basis. For emissions inventory purposes, site-specific information should be taken into account when determining the total NMOC concentration. In the absence of site-specific information, a value of 2,420 ppmv as hexane is suggested for landfills known to have co-disposal of MSW and non-residential waste. If the landfill is known to contain only MSW or

have very little organic commercial/industrial wastes, then a total NMOC value of 595 ppmv as hexane should be used. In addition, as with the landfill model defaults, the regulatory default value for NMOC content must be used in order to comply with the NSPS/Emission Guideline.

If a site-specific total pollutant concentration is available (i.e., as measured by EPA Reference Method 25C), it must be corrected for air infiltration which can occur by two different mechanisms: LFG sample

$$C_p$$
 (ppmv) (corrected for air infiltration) =
$$\frac{C_p \text{ (ppmv) (1 x 10^6)}}{C_{CO_2} \text{ (ppmv)} + C_{CH_4} \text{ (ppmv)}}$$
 (2)

dilution, and air intrusion into the landfill. These corrections require site-specific data for the LFG CH₄, CO_2 , nitrogen (N_2), and oxygen (O_2) content. If the ratio of N_2 to O_2 is less than or equal to 4.0 (as found in ambient air), then the total pollutant concentration is adjusted for sample dilution by assuming that CO_2 and CH_4 are the primary (100 percent) constituents of landfill gas, and the following equation is used:

where:

Cp = Concentration of pollutant P in landfill gas (i.e., NMOC as hexane), ppmv;

C_{CO₂} = CO₂ concentration in landfill gas, ppmv:

C_{CH₄} = CH₄ Concentration in landfill gas, ppmv; and

 1×10^6 = Constant used to correct concentration of P to units of ppmv.

If the ratio of N_2 to O_2 concentrations (i.e., C_{N_2} , C_{O_2}) is greater than 4.0, then the total pollutant concentration should be adjusted for air intrusion into the landfill by using equation 2 and adding the concentration of N_2 (i.e., C_{N_2}) to the denominator. Values for C_{CO_2} , C_{CH_4} , C_{N_2} , C_{O_2} , can usually be found in the source test report for the particular landfill along with the total pollutant concentration data.

To estimate emissions of NMOC or other landfill gas constituents, the following equation should be used:

$$Q_{p} = 1.82 Q_{CH_{4}} * \frac{C_{p}}{(1 \times 10^{6})}$$
(3)

where:

Qp = Emission rate of pollutant P (i.e. NMOC), m³/yr;

QCH₄ = CH₄ generation rate, m³/yr (from the Landfill Air Emissions Estimation model);

Cp = Concentration of P in landfill gas, ppmv; and

1.82 = Multiplication factor (assumes that approximately 55 percent of landfill gas is CH₄ and 45 percent is CO₂, N₂, and other constituents).

Uncontrolled mass emissions per year of total NMOC (as hexane), CO₂, CH₄, and speciated organic and inorganic compounds can be estimated by the following equation:

$$UM_{p} = Q_{p} * \left[\frac{MW_{p} * 1 \text{ atm}}{(8.205 \times 10^{-5} \text{ m}^{3} - \text{atm/gmol} - \text{`K})(1000 \text{g/kg})(273 + \text{T `K})} \right]$$
(4)

where:

UMp = Uncontrolled mass emissions of pollutant P (i.e., NMOC), kg/yr; MWp = Molecular weight of P, g/gmol (i.e., 86.18 for NMOC as hexane); Qp = NMOC emission rate of P, m³/yr; and T = Temperature of landfill gas, °C.

This equation assumes that the operating pressure of the system is approximately 1 atmosphere. If the temperature of the landfill gas is not known, a temperature of 25°C (77°F) is recommended.

Uncontrolled default concentrations of speciated organics along with some inorganic compounds are presented in Table 2.4-1. These default concentrations have already been corrected for air infiltration and can be used as input parameters to equation 3 or the Landfill Air Emission Estimation model for estimating speciated emissions from landfills when site-specific data are not available. An analysis of the data, based on the co-disposal history (with non-residential wastes) of the individual landfills from which the concentration data were derived, indicates that for benzene, NMOC, and toluene, there is a difference in the uncontrolled concentrations. Table 2.4-2 presents the corrected concentrations for benzene, NMOC, and toluene to use based on the site's co-disposal history.

It is important to note that the compounds listed in Tables 2.4-1 and 2.4-2 are not the only compounds likely to be present in LFG. The listed compounds are those that were identified through a review of the available literature. The reader should be aware that additional compounds are likely present, such as those associated with consumer or industrial products. Given this information, extreme caution should be exercised in the use of the default VOC weight fractions and concentrations given at the bottom of Table 2.4-2. These default VOC values are heavily influenced by the ethane content of the LFG. Available data have shown that there is a range of over 1,500 ppmv in LFG ethane content among landfills.

2.4.4.2 Controlled Emissions — Emissions from landfills are typically controlled by installing a gas collection system, and combusting the collected gas through the use of internal combustion engines, flares, or turbines. Gas collection systems are not 100 percent efficient in collecting landfill gas, so emissions of CH₄ and NMOC at a landfill with a gas recovery system still occur. To estimate controlled emissions of CH₄, NMOC, and other constituents in landfill gas, the collection efficiency of the system must first be estimated. Reported collection efficiencies typically range from 60 to 85 percent, with an average of 75 percent most commonly assumed. Higher collection efficiencies may be achieved at some sites (i.e., those engineered to control gas emissions). If site-specific collection efficiencies are available (i.e., through a comprehensive surface sampling program), then they should be used instead of the 75 percent average.

Controlled emission estimates also need to take into account the control efficiency of the control device. Control efficiencies based on test data for the combustion of CH₄, NMOC, and some speciated organics with differing control devices are presented in Table 2.4-3. Emissions from the control devices need to be added to the uncollected emissions to estimate total controlled emissions.

Controlled CH₄, NMOC, and speciated emissions can be calculated with equation 5. It is assumed that the landfill gas collection and control system operates 100 percent of the time. Minor durations of system downtime associated with routine maintenance and repair (i.e., 5 to 7 percent) will not appreciably effect emission estimates. The first term in equation 5 accounts for emissions from uncollected landfill gas, white the second term accounts for emissions of the pollutant that were collected but not combusted in the control or utilization device:

$$CM_{p} = \left[UM_{p} * \left(1 - \frac{\eta_{col}}{100}\right)\right] + \left[UM_{p} * \frac{\eta_{col}}{100} * \left(1 - \frac{\eta_{cnt}}{100}\right)\right]$$
(5)

where:

CMp = Controlled mass emissions of pollutant P, kg/yr;

UMp = Uncontrolled mass emissions of P, kg/yr (from equation 4 or the Landfill Air

Emissions Estimation Model);

 η_{col} = Collection efficiency of the landfill gas collection system, percent; and

 η_{cnt} = Control efficiency of the landfill gas control or utilization device, percent.

Emission factors for the secondary compounds, CO and NO_x, exiting the control device are presented in Tables 2.4-4 and 2.4-5. These emission factors should be used when equipment vendor guarantees are not available.

Controlled emissions of CO₂ and sulfur dioxide (SO₂) are best estimated using site-specific landfill gas constituent concentrations and mass balance methods.⁶⁸ If site-specific data are not available, the data in tables 2.4-1 through 2.4-3 can be used with the mass balance methods that follow.

Controlled CO₂ emissions include emissions from the CO₂ component of landfill gas (equivalent to uncontrolled emissions) and additional CO₂ formed during the combustion of landfill gas. The bulk of the CO₂ formed during landfill gas combustion comes from the combustion of the CH₄ fraction. Small quantities will be formed during the combustion of the NMOC fraction, however, this typically amounts to less than 1 percent of total CO₂ emissions by weight. Also, the formation of CO through incomplete combustion of landfill gas will result in small quantities of CO₂ not being formed. This contribution to the overall mass balance picture is also very small and does not have a significant impact on overall CO₂ emissions.

The following equation which assumes a 100 percent combustion efficiency for CH₄ can be used to estimate CO₂ emissions from controlled landfills:

$$CM_{CO_2} = UM_{CO_2} + \left[UM_{CH_4} * \frac{\eta_{col}}{100} * 2.75 \right]$$
 (6)

where:

CM_{CO₂} = Controlled mass emissions of CO₂, kg/yr; UM_{CO}, = Uncontrolled mass emissions of CO₂, kg/yr

UM_{CO}₂ = Uncontrolled mass emissions of CO₂, kg/yr (from equation 4 or the Landfill Air

Emission Estimation Model);

UM_{CH₄} Uncontrolled mass emissions of CH₄, kg/yr (from equation 4 on the Landfill Air

Emission Estimation Model);
Efficiency of the landfill gas collection system, percent; and

2.75 \approx Ratio of the molecular weight of CO_2 to the molecular weight of CH_4 .

To prepare estimates of SO₂ emissions, data on the concentration of reduced sulfur compounds within the landfill gas are needed. The best way to prepare this estimate is with site-specific information on the total reduced sulfur content of the landfill gas. Often these data are expressed in ppmv as sulfur (S). Equations 3 and 4 should be used first to determine the uncontrolled mass emission rate of reduced sulfur compounds as sulfur. Then, the following equation can be used to estimate SO₂ emissions:

$$CM_{SO_2} = UM_S + \frac{\eta_{col}}{100} * 2.0$$
 (7)

where:

CM_{SO₂} = Controlled mass emissions of SO₂, kg/yr; UM_S = Uncontrolled mass emissions of reduced s

UMS = Uncontrolled mass emissions of reduced sulfur compounds as sulfur, kg/yr (from equations 3 and 4);

 η_{col} = Efficiency of the landfill gas collection system, percent; and

2.0 = Ratio of the molecular weight of SO_2 to the molecular weight of S.

The next best method to estimate SO₂ concentrations, if site-specific data for total reduced sulfur compounds as sulfur are not available, is to use site-specific data for speciated reduced sulfur compound concentrations. These data can be converted to ppmv as S with equation 8. After the total reduced sulfur as S has been obtained from equation 8, then equations 3, 4, and 7 can be used to derive SO₂ emissions.

$$C_{S} = \sum_{i=1}^{n} C_{P} * S_{P}$$
(8)

where:

Cs = Concentration of total reduced sulfur compounds, ppmv as S (for use in equation 3);

Cp = Concentration of each reduced sulfur compound, ppmv;

Sp = Number of moles of S produced from the combustion of each reduced sulfur compound (i.e., 1 for sulfides, 2 for disulfides); and

n = Number of reduced sulfur compounds available for summation.

If no site-specific data are available, a value of 46.9 ppmv can be assumed for C_8 (for use in equation 3). This value was obtained by using the default concentrations presented in Table 2.4-1 for reduced sulfur compounds and equation 8.

Hydrochloric acid [Hydrogen Chloride (HCl)] emissions are formed when chlorinated compounds in LFG are combusted in control equipment. The best methods to estimate emissions are mass balance methods that are analogous to those presented above for estimating SO₂ emissions. Hence, the best source of data to estimate HCl emissions is site-specific LFG data on total chloride [expressed in ppmv as the chloride ion (Cl)]. If these data are not available, then total chloride can be estimated from data on individual chlorinated species using equation 9 below. However, emission estimates may be

underestimated, since not every chlorinated compound in the LFG will be represented in the laboratory report (i.e., only those that the analytical method specifies).

$$C_{Cl} = \sum_{i=1}^{n} C_{p} * Cl_{p}$$

$$(9)$$

where:

Concentration of total chloride, ppmv as Cl' (for use in equation 3); C_{CI}

Concentration of each chlorinated compound, ppmv; Cр

Number of moles of CI produced from the combustion of each chlorinated Clp

compound (i.e., 3 for 1,1,1-trichloroethane); and

Number of chlorinated compounds available for summation. n

After the total chloride concentration (C_{Cl}) has been estimated, equations 3 and 4 should be used to determine the total uncontrolled mass emission rate of chlorinated compounds as chloride ion (UM_{Ci}). This value is then used in equation 10 below to derive HCI emission estimates:

where:

 CM_{HCL} Controlled mass emissions of HCl, kg/yr;

Uncontrolled mass emissions of chlorinated compounds as chloride, kg/yr (from UM_{CL}

equations 3 and 4):

Efficiency of the landfill gas collection system, percent; η_{col}

Ratio of the molecular weight of HCl to the molecular weight of Cl; and 1.03 Control efficiency of the landfill gas control or utilization device, percent. η_{cm}

In estimating HCl emissions, it is assumed that all of the chloride ion from the combustion of chlorinated LFG constituents is converted to HCl. If an estimate of the control efficiency, η_{ent} , is not available, then the high end of the control efficiency range for the equipment listed in Table 9 should be used. This assumption is recommended to assume that HCl emissions are not under-estimated.

If site-specific data on total chloride or speciated chlorinated compounds are not available, then a default value of 42.0 ppmv can be used for C_{Cl}. This value was derived from the default LFG constituent concentrations presented in Table 2.4-1. As mentioned above, use of this default may produce underestimates of HCl emissions since it is based only on those compounds for which analyses have been performed. The constituents listed in Table 2.4-1 are likely not all of the chlorinated compounds present in LFG.

13.2,2 The reader is referred to Sections 11-2-1 (Unpaved Roads, SCC 50100401), and 11-2-4 (Heavy 13.2.3 Construction Operations) of Volume I, and Section II-7 (Construction Equipment) of Volume II, of the AP-42 document for determination of associated fugitive dust and exhaust emissions from these emission sources at MSW landfills.

In equation 10 on page 2.4-9 of Section 2.4, the last term should be

$$\left(\frac{\eta_{cnt}}{100}\right)$$

The control efficiency of the landfill gas control device should be taken from table 2.4-3.

2.4.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. This is revision includes major revisions of the text and recommended emission factors contained in the section. The most significant revisions to this section since publication in the Fifth Edition are summarized below.

- The equations to calculate the CH4, CO2 and other constituents were simplified.
- The default L0 and k were revised based upon an expanded base of gas generation data.
- The default ratio of CO2 to CH4 was revised based upon averages observed in available source test reports.
- The default concentrations of LFG constituents were revised based upon additional data.
- Additional control efficiencies were included and existing efficiencies were revised based upon additional emission test data.
- Revised and expanded the recommended emission factors for secondary compounds emitted from typical control devices.

Table 2.4-1. DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS^a

(SCC 50100402, 50300603)

(SCC S	0100402, 50300603)	
Compound	Molecular Weight	Default Concentration (ppmv)	Emission Factor Rating
1,1,1-Trichloroethane (methyl chloroform)	133.42	0.48	B
1,1,2,2-Tetrachloroethane ^a	167.85	1.11	C
1,1-Dichloroethane (ethylidene dichloride) ^a	98.95	2.35	В
1,1-Dichloroethene (vinylidene chloride)	96.94	0.20	В
1,2-Dichloroethane (ethylene dichloride) ^a	98.96	0.41	В
1,2-Dichloropropane (propylene dichloride) ^a	112.98	0.18	D
2-Propanol (isopropyl alcohol)	60.11	50.1	E
Acetone	58.08	7.01	В
Acrylonitrile ^a	53.06	6.33	D
Bromodichloromethane	163.83	3.13	C
Butane	58.12	5.03	C
Carbon disulfide ^a	76.13	0.58	C
Carbon monoxide ^b	28.01	141	E
Carbon tetrachloride ^a	153.84	0.004	В
Carbonyl sulfide ^a	60.07	0.49	D
Chlorobenzene ^a	112.56	0.25	C
Chlorodifluoromethane	86.47	1.30	C
Chloroethane (ethyl chloride) ^a	64.52	1.25	В
Chloroform ^a	119,39	0.03	В
Chloromethane	50.49	1.21	В
Dichlorobenzene ^c	147	0.21	E
Dichlorodifluoromethane	120.91	15.7	A
Dichlorofluoromethane	102.92	2.62	D
Dichloromethane (methylene chloride) ^a	84.94	14.3	A
Dimethyl sulfide (methyl sulfide)	62.13	7.82	С
Ethane	30.07	889	С
Ethanol	46.08	27.2	E
Ethyl mercaptan (ethanethiol)	62.13	2.28	D
Ethylbenzene ^a	106.16	4.61	В
Ethylene dibromide	187.88	0.001	E
Fluorotrichloromethane	137.38	0.76	В
Hexane ^a	86.18	6.57	В
Hydrogen sulfide	34.08	35.5	В
Mercury (total) ^{n,d}	200.61	2.92x10 ⁻¹	E

Table 2.4-1. (Concluded)

Compound	Molecular Weight	Default Concentration (ppmv)	Emission Factor Rating
Methyl ethyl ketone"	72.11	7.09	٨
Methyl isobutyl ketone*	100.16	1.87	В
Methyl mercaptan	48.11	2.49	C
Pentane	72.15	3.29	C
Perchloroethylene (tetrachloroethylene) ^a	165.83	3.73	В
Propane	44.09	11,1	В
t-1,2-dichloroethene	96.94	2.84	В
Trichloroethylene (trichloroethene) ^a	131.38	2.82	В
Vinyl chloride ^a	62.50	7.34	В
Xylenes ^a	106.16	12.1	В

NOTE: This is not an all-inclusive list of potential LFG constituents, only those for which test data were available at multiple sites. References 10-67. Source Classification Codes in parentheses.

^a Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments.

^b Carbon monoxide is not a typical constituent of LFG, but does exist in instances involving landfill (underground) combustion. Therefore, this default value should be used with caution. Of 18 sites where CO was measured, only 2 showed detectable levels of CO.

^e Source tests did not indicate whether this compound was the para- or ortho- isomer. The para isomer is a Title III-listed HAP.

^d No data were available to speciate total Hg into the elemental and organic forms.

Table 2.4-2. DEFAULT CONCENTRATIONS OF BENZENE, NMOC, AND TOLUENE BASED ON WASTE DISPOSAL HISTORY

(SCC 50100402, 50300603)

Pollutant	Molecular Weight	Default Concentration (ppmv)	Emission Factor Rating
Benzene ^b	78.11		
Co-disposal		11.1	D
No or Unknown co-disposal		1.91	В
NMOC (as hexane) ^c	86.18		
Co-disposal		2420	D
No or Unknown co-disposal		595	В
Tolueneb	92.13		
Co-disposal		165	D
No or Unknown co-disposal	1.	39.3	A

^a References 10-54. Source Classification Codes in parentheses.

^b Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments.

[°] For NSPS/Emission Guideline compliance purposes, the default concentration for NMOC as specified in the final rule must be used. For purposes not associated with NSPS/Emission Guideline compliance, the default VOC content at co-disposal sites = 85 percent by weight (2,060 ppmv as hexane); at No or Unknown sites = 39 percent by weight 235 ppmv as hexane).

Table 2.4-3. CONTROL EFFICIENCIES FOR LFG CONSTITUENTS^a

		Control Efficiency (%)		(%)
Control Device	Constituent ^b	Typical	Range	Rating
Boiler/Steam Turbine	NMOC	98.0	96-99+	D ·
(50100423)	Halogenated Species	99.6	87-99+	D.
	Non-Halogenated Species	99.8	67-99+	D
Flare ^c (50100410)	NMOC	99.2	90-99+	В
(50300601)	Halogenated Species	98.0	91-99+	С
	Non-Halogenated Species	99.7	38-99+	C
Gas Turbine (50100420)	NMOC	94.4	90-99+	Ê
(00100.20)	Halogenated Species	99.7	98-99+	E
	Non-Halogenated Species	98.2	97-99+	E
IC Engine (50100421)	NMOC	97.2	94-99+	E
(55.55.21)	Halogenated Species	93.0	90-99+	E
	Non-Halogenated Species	86.1	25-99+	E

^a References 10-67. Source Classification Codes in parentheses.
^b Halogenated species are those containing atoms of chlorine, bromine, fluorine, or iodine. For any equipment, the control efficiency for mercury should be assumed to be 0. See section 2.4.4.2 for methods to estimate emissions of SO₂, CO₂, and HCl.

^e Where information on equipment was given in the reference, test data were taken from enclosed flares. Control efficiencies are assumed to be equally representative of open flares.

Table 2.4-4. (Metric Units) EMISSION FACTORS FOR SECONDARY COMPOUNDS EXITING CONTROL DEVICES*

Control Device	Pollutant ⁶	Typical Rate, kg/hr/dscmm Methane	Emission Factor Rating
Flare ^c	Nitrogen dioxide	0.039	С
(50100410)	Carbon monoxide	0.72	С
(50300601)	Particulate matter	0.016	D
IC Engine	Nitrogen dioxide	0.24	D
(50100421)	Carbon monoxide	0.45	С
	Particulate matter	0.046	E
Boiler/Steam Turbine ^d	Nitrogen dioxide	0.032	D
(50100423)	Carbon monoxide	5.4×10^{-3}	Е
	Particulate matter	7.9×10^{-3}	D
Gas Turbine	Nitrogen dioxide	0.083	D
(50100420)	Carbon monoxide	0.22	E
,	Particulate matter	0.021	Е

^a Source Classification Codes in parentheses.

^b No data on PM size distributions were available, however for other gas-fired combustion sources, most of the particulate matter is less than 2.5 microns in diameter. Hence, this emission factor can be used to provide estimates of PM-10 or PM-2.5 emissions. See section 2.4.4.2 for methods to estimate CO₂, SO₂, and HCl.

^c Where information on equipment was given in the reference, test data were taken from enclosed flares. Control efficiencies are assumed to be equally representative of open flares.

^d All source tests were conducted on boilers, however emission factors should also be representative of steam turbines. Emission factors are representative of boilers equipped with low-NO_x burners and flue gas recirculation. No data were available for uncontrolled NO_x emissions.

Table 2.4-5. (English Units) EMISSION RATES FOR SECONDARY COMPOUNDS EXITING CONTROL DEVICES^a

Control Device	Pollutant ^b	Typical Rate, lb/hr/dscfm Methane	Emission Factor Rating
Flare ^c (50100410) (50300601)	Nitrogen dioxide Carbon monoxide Particulate matter	$2.4 \times 10^{-3} \\ + 0.045 \\ 1.0 \times 10^{-3}$	C C D
IC Engine (50100421)	Nitrogen dioxide Carbon monoxide Particulate matter	0.015 0.028 2.9 x 10 ⁻³	D C E
Boiler/Steam Turbine ^d (50100423)	Nitrogen dioxide Carbon monoxide Particulate matter	2.0×10^{-3} 3.4×10^{-4} 4.9×10^{-4}	E E E
Gas Turbine (50100420)	Nitrogen dioxide Carbon monoxide Particulate matter	5.2 x 10 ⁻³ 0.014 1.3 x 10 ⁻³	D D E

^a Source Classification Codes in parentheses.

References for Section 2.4

- 1. "Criteria for Municipal Solid Waste Landfills," 40 CFR Part 258, Volume 56, No. 196, October 9, 1991.
- 2. Air Emissions from Municipal Solid Waste Landfills Background Information for Proposed Standards and Guidelines, Office of Air Quality Planning and Standards, EPA-450/3-90-011a, Chapters 3 and 4, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1991.
- 3. Characterization of Municipal Solid Waste in the United States: 1992 Update, Office of Solid Waste, EPA-530-R-92-019, U. S. Environmental Protection Agency, Washington, DC, NTIS No. PB92-207-166, July 1992.
- Eastern Research Group, Inc., List of Municipal Solid Waste Landfills, Prepared for the U. S. Environmental Protection Agency, Office of Solid Waste, Municipal and Industrial Solid Waste Division, Washington, DC, September 1992.

^b Based on data for other combustion sources, most of the particulate matter will be less than 2.5 microns in diameter. Hence, this emission rate can be used to provide estimates of PM-10 or PM-2.5 emissions. See section 2.4.4.2 for methods to estimate CO₂, SO₂, and HCl.

 $^{^{\}circ}$ Where information on equipment was given in the reference, test data were taken from enclosed flares. Control efficiencies are assumed to be equally representative of open flares. $^{\rm d}$ All source tests were conducted on boilers, however emission factors should also be representative of steam turbines. Emission factors are representative of boilers equipped with low-NO_x burners and flue gas recirculation. No data were available for uncontrolled NO_x emissions.

- 5. Suggested Control Measures for Landfill Gas Emissions, State of California Air Resources Board, Stationary Source Division, Sacramento, CA, August 1990.
- 6. "Standards of Performance for New Stationary Sources and Guidelines for Control of Existing Sources: Municipal Solid Waste Landfills; Proposed Rule, Guideline, and Notice of Public Hearing," 40 CFR Parts 51, 52, and 60, Vol. 56, No. 104, May 30, 1991.
- 7. S.W. Zison, Landfill Gas Production Curves: Myth Versus Reality, Pacific Energy, City of Commerce, CA, [Unpublished]
- 8. R.L. Peer, et al., Memorandum Methodology Used to Revise the Model Inputs in the Municipal Solid Waste Landfills Input Data Bases (Revised), to the Municipal Solid Waste Landfills Docket No. A-88-09, April 28, 1993.
- 9. A.R. Chowdhury, Emissions from a Landfill Gas-Fired Turbine/Generator Set, Source Test Report C-84-33, Los Angeles County Sanitation District, South Coast Air Quality Management District, June 28, 1984.
- 10. Engineering-Science, Inc., Report of Stack Testing at County Sanitation District Los Angeles Puente Hills Landfill, Los Angeles County Sanitation District, August 15, 1984.
- 11. J.R. Manker, Vinyl Chloride (and Other Organic Compounds) Content of Landfill Gas Vented to an Inoperative Flare, Source Test Report 84-496, David Price Company, South Coast Air Quality Management District, November 30, 1984.
- 12. S. Mainoff, Landfill Gas Composition, Source Test Report 85-102, Bradley Pit Landfill, South Coast Air Quality Management District, May 22, 1985.
- 13. J. Littman, Vinyl Chloride and Other Selected Compounds Present in A Landfill Gas Collection System Prior to and after Flaring, Source Test Report 85-369, Los Angeles County Sanitation District, South Coast Air Quality Management District, October 9, 1985.
- 14. W.A. Nakagawa, Emissions from a Landfill Exhausting Through a Flare System, Source Test Report 85-461, Operating Industries, South Coast Air Quality Management District, October 14, 1985.
- 15. S. Marinoff, Emissions from a Landfill Gas Collection System, Source Test Report 85-511. Sheldon Street Landfill, South Coast Air Quality Management District, December 9, 1985.
- 16. W.A. Nakagawa, Vinyl Chloride and Other Selected Compounds Present in a Landfill Gas Collection System Prior to and after Flaring, Source Test Report 85-592, Mission Canyon Landfill, Los Angeles County Sanitation District, South Coast Air Quality Management District, January 16, 1986.
- 17. California Air Resources Board, Evaluation Test on a Landfill Gas-Fired Flare at the BKK Landfill Facility, West Covina, CA, ARB-SS-87-09, July 1986.
- 18. S. Marinoff, Gaseous Composition from a Landfill Gas Collection System and Flare, Source Test Report 86-0342, Syufy Enterprises, South Coast Air Quality Management District, August 21, 1986.
- 19. Analytical Laboratory Report for Source Test, Azusa Land Reclamation, June 30, 1983, South Coast Air Quality Management District.
- 20. J.R. Manker, Source Test Report C-84-202, Bradley Pit Landfill, South Coast Air Quality Management District, May 25, 1984.

- 21. S. Marinoff, Source Test Report 84-315, Puente Hills Landfill, South Coast Air Quality Management District, February 6, 1985.
- 22. P.P. Chavez, Source Test Report 84-596, Bradley Pit Landfill, South Coast Air Quality Management District, March 11, 1985.
- 23. S. Marinoff, Source Test Report 84-373, Los Angeles By-Products, South Coast air Quality Management District, March 27, 1985.
- 24. J. Littman, Source Test Report 85-403, Palos Verdes Landfill, South Coast Air Quality Management District, September 25, 1985.
- 25. S. Marinoff, Source Test Report 86-0234, Pacific Lighting Energy Systems, South Coast Air Quality Management District, July 16, 1986.
- 26. South Coast Air Quality Management District, Evaluation Test on a Landfill Gas-Fired Flare at the Los Angeles County Sanitation District's Puente Hills Landfill Facility, [ARB/SS-87-06], Sacramento, CA, July 1986.
- 27. D.L. Campbell, et al., Analysis of Factors Affecting Methane Gas Recovery from Six Landfills, Air and Energy Engineering Research Laboratory, EPA-600/2-91-055, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1991.
- 28. Browning-Ferris Industries, Source Test Report, Lyon Development Landfill, August 21, 1990.
- 29. X.V. Via, Source Test Report, Browning-Ferris Industries, Azusa Landfill.
- 30. M. Nourot, Gaseous Composition from a Landfill Gas Collection System and Flare Outlet. Laidlaw Gas Recovery Systems, to J.R. Farmer, OAQPS:ESD, December 8, 1987.
- 31. D.A. Stringham and W.H. Wolfe, *Waste Management of North America, Inc.*, to J.R. Farmer, OAQPS:ESD, January 29, 1988, Response to Section 114 questionnaire.
- 32. V. Espinosa, Source Test Report 87-0318, Los Angeles County Sanitation District Calabasas Landfill, South Coast Air Quality Management District, December 16, 1987.
- 33. C.S. Bhatt, Source Test Report 87-0329, Los Angeles County Sanitation District, Scholl Canyon Landfill, South Coast Air Quality Management District, December 4, 1987.
- 34. V. Espinosa, Source Test Report 87-0391, Puente Hills Landfill, South Coast Air Quality Management District, February 5, 1988.
- 35. V. Espinosa, Source Test Report 87-0376, Palos Verdes Landfill, South Coast Air Quality Management District, February 9, 1987.
- 36. Bay Area Air Quality Management District, Landfill Gas Characterization, Oakland, CA, 1988.
- 37. Steiner Environmental, Inc., *Emission Testing at BFI's Arbor Hills Landfill, Northville, Michigan*, September 22 through 25, 1992, Bakersfield, CA, December 1992.
- 38. PEI Associates, Inc., Emission Test Report Performance Evaluation Landfill-Gas Enclosed Flare, Browning Ferris Industries, Chicopee, MA, 1990.
- 39. Kleinfelder Inc., Source Test Report Boiler and Flare Systems, Prepared for Laidlaw Gas Recovery Systems, Coyote Canyon Landfill, Diamond Bar, CA, 1991.

- 40. Bay Area Air Quality Management District, McGill Flare Destruction Efficiency Test Report for Landfill Gas at the Durham Road Landfill, Oakland, CA, 1988.
- 41. San Diego Air Pollution Control District, Solid Waste Assessment for Otay Valley/Annex Landfill. San Diego, CA, December 1988.
- 42. PEI Associates, Inc., Emission Test Report Performance Evaluation Landfill Gas Enclosed Flare, Rockingham, VT, September 1990.
- 43. Browning-Ferris Industries, Gas Flare Emissions Source Test for Sunshine Canyon Landfill. Sylmar, CA, 1991.
- 44. Scott Environmental Technology, Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed Landfill Gas Flare, April 1992.
- 45. BCM Engineers, Planners, Scientists and Laboratory Services, Air Pollution Emission Evaluation Report for Ground Flare at Browning Ferris Industries Greentree Landfill, Kersey, Pennsylvania. Pittsburgh, PA, May 1992.
- 46. EnvironMETeo Services Inc., Stack Emissions Test Report for Ameron Kapaa Quarry, Waipahu, HI, January 1994.
- 47. Waukesha Pearce Industries, Inc., Report of Emission Levels and Fuel Economies for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Houston TX, July 19, 1991.
- 48. Mostardi-Platt Associates, Inc., Gaseous Emission Study Performed for Waste Management of North America, Inc., CID Environmental Complex Gas Recovery Facility, August 8, 1989. Chicago, IL, August 1989.
- 49. Mostardi-Platt Associates, Inc., Gaseous Emission Study Performed for Waste Management of North America, Inc., at the CID Environmental Complex Gas Recovery Facility, July 12-14, 1989. Chicago, IL, July 1989.
- 50. Browning-Ferris Gas Services, Inc., Final Report for Emissions Compliance Testing of One Waukesha Engine Generator, Chicopee, MA, February 1994.
- 51. Browning-Ferris Gas Services, Inc., Final Report for Emissions Compliance Testing of Three Waukesha Engine Generators, Richmond, VA, February 1994.
- 52. South Coast Environmental Company (SCEC), Emission Factors for Landfill Gas Flares at the Arizona Street Landfill, Prepared for the San Diego Air Pollution Control District, San Diego, CA, November 1992.
- 53. Carnot, Emission Tests on the Puente Hills Energy from Landfill Gas (PERG) Facility Unit 400, September 1993, Prepared for County Sanitation Districts of Los Angeles County, Tustin, CA, November 1993.
- 54. Pape & Steiner Environmental Services, Compliance Testing for Spadra Landfill Gas-to-Energy Plant, July 25 and 26, 1990, Bakersfield, CA, November 1990.
- 55. AB2588 Source Test Report for Oxnard Landfill, July 23-27, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, October 1990.

Attachment E

NSPS Emissions

■ 1996 – 1998 NMOC Emission Rates

■ Tier II Emissions

PAGEL LANDFILL

1996-1998 NONMETHANE ORGANIC COMPOUNDS EMISSION RATE REPORT FOR NEW SOURCE PERFORMANCE STANDARDS

Prepared for

Winnebago Reclamation Service, Inc.

Winnebago County, Illinois

January 7, 1999

PAGEL LANDFILL

1996-1998 NONMETHANE ORGANIC COMPOUNDS EMISSION RATE REPORT FOR NEW SOURCE PERFORMANCE STANDARDS

TABLE OF CONTENTS

INTRODUCTION		1
DESIGN CAPACIT	Υ	1
NMOC EMISSION	RATE	2
	APPENDICES	
APPENDIX A	INITIAL DESIGN CAPACITY REPORT - Calculations	
APPENDIX B	ANNUAL WASTE ACCEPTANCE RATES	
APPENDIX C	IN-PLACE WASTE CALCULATIONS	
APPENDIX D	LANDFILL GAS EMISSIONS MODEL OUTPUT	

PAGEL LANDFILL

1996-1998 NONMETHANE ORGANIC COMPOUNDS EMISSION RATE REPORT FOR NEW SOURCE PERFORMANCE STANDARDS

INTRODUCTION

Pursuant to 40 CFR 60.752-- New Source Performance Standards (NSPS) for municipal solid waste landfills (MSWLFs) -- any landfill with a design capacity greater than 2,500,000 m³ and 2,500,000 Mg must submit annual nonmethane organic compound (NMOC) emission rate report(s). Furthermore, those landfills which demonstrate an annual NMOC emission rate greater than 50 Mg/yr are required to either recalculate the NMOC emission rate using a site-specific NMOC concentration or submit plans for a gas collection system.

DESIGN CAPACITY

The waste design capacity for Winnebago Reclamation Service, Inc. (WRS) - Pagel Landfill was taken from the document submitted to IEPA June 10, 1996, "Initial Design Capacity and Nonmethane Organic Compounds Emission Rate Reports" (IDCR), see Appendix A. The resulting design capacity for the facility was determined to be 8,530,000 cy (6,522,000 m³ and 4,645,000 Mg); therefore, WRS - Pagel Landfill is required to submit annual NMOC emission rate report(s). It has been somewhat unclear whether one report with conservative assumptions may cover several years, or if separate reports are required annually.

NMOC EMISSION RATE

The annual NMOC emission rates for the facility was determined by use of U.S. EPA's Landfill Gas Emissions Model, version 2.01. This model uses standard defaults for equations found in 40 CFR 60.754, together with annual solid waste acceptance rates (Appendix B), to calculate annual NMOC emissions from MSWLFs.

Pagel Landfill began accepting waste in 1972 and has provided annual waste mass acceptance rates for 1995 -1998, see Appendix B. Records of waste placement prior to 1995 were not available for this analysis. However, volume calculations from the IEPA - Department of Land Pollution Control (DLPC) "Application for Significant Modification to Permit for an Existing Unit" - IEPA Site No. 2018080001, May, 1996, Log. 1995-250, Vol. II of II, Attachment 23 were used to determine the total amount of in-place waste, see Appendix C. For the end of 1995, the remaining refuse capacity is estimated at 1,442,200 cy. At the end of 1995 (or beginning of 1996), the total net volume of in-place waste for the "existing unit" was determined to be 2,794,680 tons, see Appendix C.

In order to determine the average annual acceptance rate prior to 1995, the total waste in-place through 1995 was divided evenly for the years 1972 thru 1994. The average annual acceptance rates for 1972-1994 were found to be 109,846 tons/yr (99,650 Mg/yr), see Appendix C. The annual waste acceptance rates were used in the estimation model.

Results of the emissions estimation model (Appendix D) indicate that for the years ending 1996 through 1998, NMOC emission rates are between 430 Mg/yr and 520 Mg/yr. These values are above the maximum emission rate of 50 Mg/yr NMOC. Therefore, according to the NSPS regulations, Pagel Landfill is required to either recalculate the NMOC emission rate using a site-specific NMOC concentration, or

the 1st NMOC submit plans for a gas collection system within one year of submittal of this design capacity report. Above 50 mg (yr.

Illinois EPA air pollution control permits are currently active for the gas collection system and associated equipment. The permitted equipment has been installed and is currently either being utilized, or undergoing maintenance or improvements.

September 25, 1997 Project 86078-003.002

Mr. Thomas Hilbert **Winnebago Reclamation Service, Inc.** 8403 Lindenwood Road Rockford, Illinois 61109

Re: Pagel Landfill

Tier 2 Landfill Gas Testing Results

Dear Tom:

EMCON has completed Tier 2 landfill gas testing at your Pagel Landfill Facility. Thirty-five samples, including 12 from existing gas extraction wells and 23 from probe holes, were collected by TEG-Midwest, Inc. The samples were composited into eight Summa® Canisters and shipped to Quanterra Environmental Services in City of Industry, California where they were analyzed in accordance with EPA Method 25C and EPA Method 3C.

When corrected for moisture and nitrogen content, the samples yielded a weighted-composite Non-methane Organic Compound (NMOC) concentration of 924 ppm as hexane (C₆). Unfortunately, this value is not low enough to release your facility from the gas collection and control system requirements detailed in the New Source Performance Standards (NSPS) for municipal waste landfills. When substituted into the Tier 1 emission equation, the site-specific NMOC concentration yields a NMOC emission rate of 90.3 Mg/yr, greater than the NMOC emission threshold of 50 Mg/yr.

Since the NMOC emission rate can not be demonstrated to be below the threshold, it is not necessary to submit the test results to the Illinois Environmental Protection Agency (IEPA) or to USEPA. Therefore, we have discontinued further work on the summary report, and will bill you only for services tendered thus far. I have enclosed a copy of the analytical results and a data summary for your files.

In terms of NSPS compliance, your options now include 1) conducting a Tier 3 landfill gas test, or 2) submitting a Gas Collection and Control System (GCCS) design plan. We do not recommend performing the Tier 3 test because it is expensive and does not typically yield significantly better results than the Tier 2 test. Preparation of a GCCS design plan involves the submittal of landfill gas system design drawings plus a narrative describing the operation and monitoring procedures and demonstrating that the design

meets all the requirements of the NSPS. For a facility such as yours where the design plans are already complete, preparation of the GCCS design plan typically costs about \$6,000.

Please contact me if you have any questions or comments. I would be happy to provide you with a detailed proposal to submit a GCCS design plan for your facility, if that is the option that you choose.

Sincerely,

EMCON

Edward M. Leigh, P

Project Engineer

Attachments: Analytical Results

Data Summary

cc: Dan Feezor, EMCON

Tom Bilgri, EMCON

PAGEL LANDFILL CAPPING PROJECT 7-97

Project: pagel797 Thu Aug 21 08:06:17 1997 Point statistics:

Starting point number: 1

Current point number: 1 ('L' indicates locked point)

Point	Current Coordinate Northing	Easting by Se Easting	arch Desc: TT* Elevation	Description
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798	2001764.6452 2001975.1285 2001977.6286 2001993.6812 2001861.4406 2001844.7282 2001785.9510 2001831.2299 2001669.1342 2001669.1342 2001668.7545 2001771.8106	800359.075 800343.380 800161.007 800039.167 799960.374 799989.494 800083.281 800166.740 800260.408 800334.935 800271.225 800189.709 800063.205 800033.715	3 4 9 1 0 0 3 7 3 6 9 2	TT 13 TT 12 TT 7 TT 3 TT 1 TT 2 TT 6 TT 8 TT 11 TT 14 TT 14 TT 10 TT 9

TT= Tier 2 testing location

Rockford, Illinois Pagel Landfill

Compilation of Tier II NMOC Test Data

			Measured	Moisture	Nitrogen	Corrected		Composite NMOC
Sample Number	Sampling Points	english dig Panasari Panasari Panasari Panasari	NMOC Conc.	Content (vol/vol)	Content (vol/vol)	NMOC Conc. (ppmv as C)	Number of Points	Concentration (ppmv as C)
93136	1.6 8 11 13	(144) 488)	005 \$	9200	0000	5 647	, ,	28.73A
11282	103, 113, 123, 134	i en Kaj	1,200	0.026	0,160	1,474	, 4	5,897
9568BB	100, 101, 102, 110	di P	1,500	0.026	0.000	1,540	4	6,160
92007	120, 130, 140, 150		1,700	0.026	0.000	1,745	4	6,982
12894	4,5,9,10,14		2,600	0.026	0.000	5,749	5	28,747
64678	2, 3, 7, 12, 17		10,000	0.026	0.050	10,823	\$	54,113
04411	15, 18, 26, 21		6,200	0.026	0.000	6,366	4	25,462
02699	17, 19, 22, 23		9,100	0.026	0.027	609'6	4	38,437
Totals							35	194,032
			Weighted Compos	site NMOC'Co.	ncentration (Veighted Composite NMOC Concentration (ppmv as Carbon)		5,544
			·					

*Moisture content calculated per EPA Method 25C assuming a landfill gas temperature of 22 deg C (72 deg F) and standard atmospheric pressure.

924

Weighted Composite NMOC Concentration (ppmv as Hexane)

APPENDIX B IEPA PART 70 PERMIT APPLICATION FORMS

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19276 SPRINGFIELD, ILLINOIS 62794-9276

•

CAAPP FORMS COMPANY NAME: Pagel Landfill ADDRESS: 8403 Lindenwood Road CITY, STATE, ZIP: ROCKFORD, Illinois 61109 PHONE #: (815) 874.4806 EXT: DATE: REQUEST FOR CAAPP FORMS (REVISED 11/16/94) 209-CAAPP X 200-CAAPP APPLICATION FOR CAAPP PERMIT* (REVISED 11/16/94) GENERAL INSTRUCTIONS FOR CAAPP APPLICATIONS (REVISED 11/16/94) 202-CAAPP X 260-CAAPP AIR POLLUTION CONTROL EQUIPMENT (REVISED 11/16/94) A. ADSORBER E. CONDENSER I. NOX CONTROL **B. AFTERBURNER** F. ELECTROSTATIC PRECIPITATOR J. FLARE C. FILTER G. PACKED SCRUBBER K. OTHER D. CYCLONE H. SCRUBBER **EMISSION UNIT FORMS** __X__ 220-CAAPP PROCESS EMISSION UNIT (REVISED 11/18/94) 240-CAAPP FUEL COMBUSTION EMISSION UNIT (REVISED 11/16/94) 250-CAAPP INCINERATOR (REVISED 11/16/94) 270-CAAPP STATIONARY INTERNAL COMBUSTION ENGINE OR TURBINE (REVISED 11/16/94) STAND ALONE FORMS 232-CAAPP STORAGE TANK (REVISED 11/16/94) 234-CAAPP HOT MIX ASPHALT PLANT (REVISED 11/18/94) 235-CAAPP AGGREGATE CRUSHING PLANT (REVISED 11/18/94) 236-CAAPP GRAIN HANDLING AND GRAIN DRYING (REVISED 11/16/94) 237-CAAPP PERCHLORETHYLENE DRY CLEANING (REVISED 11/16/94) 358-CAAPP SOLVENT CLEANING - OPEN TOP VAPOR DEGREASER (REVISED 11/16/94) 366-CAAPP SOLVENT CLEANING - CONVEYORIZED DEGREASER (REVISED 11/16/94) 367-CAAPP SOLVENT CLEANING - COLD CLEANING (REVISED 11/16/94) SUPPLEMENTAL FORMS 301-CAAPP COATING OPERATION (REVISED 11/16/94) PRINTING AND PUBLISHING (REVISED 11/16/94) 302-CAAPP 336-CAAPP ELECTROPLATING TANK (REVISED 11/16/94) 236A-CAAPP GRAIN HANDLING AND GRAIN DRYING EMISSION CALCULATION SHEET (REVISED 11/16/94) **VARIOUS FORMS** 297-CAAPP LISTING OF INSIGNIFICANT ACTIVITIES (REVISED 11/16/94) 391-CAAPP FUGITIVE EMISSIONS (REVISED 11/16/94) HAZARDOUS AIR POLLUTANT EMISSION SUMMARY (REVISED 11/16/94) 215-CAAPP COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE FOR CAAPP PERMIT (REVISED 11/16/94) COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE-ADDENDUM FOR NONCOMPLIANT EMISSION UNITS -293-CAAPP 294-CAAPP COMPLIANCE CERTIFICATION (REVISED 11/16/94) FEE DETERMINATION FOR CAAPP PERMIT (REVISED 11/16/94) 296-CAAPP - (REVISED 11/16/94) 292-CAAPP CERTIFIED PROGRESS REPORT* (REVISED 11/16/94) REQUEST TO OPERATE WITH EXCESS EMISSIONS DURING STARTUP OF EQUIPMENT (REVISED 11/16/94) 295-CAAPP 203-CAAPP 204-CAAPP REQUEST TO CONTINUE TO OPERATE DURING MALFUNCTION OR BREAKDOWN (REVISED 11/16/94) 271-CAAPP MINOR PERMIT MODIFICATION FOR CAAPP PERMIT* (REVISED 11/18/94) 272-CAAPP REQUEST FOR OWNERSHIP CHANGE FOR CAAPP PERMIT* (REVISED 11/16/94) 273-CAAPP REQUEST FOR ADMINISTRATIVE PERMIT AMENDMENT FOR CAAPP PERMIT* (REVISED 11/16/94) 400-CAAPP COMPLIANCE AND GENERAL REPORTING FORM* (REVISED 11/16/94) 405-CAAPP EXCESS EMISSIONS, MONITORING EQUIPMENT DOWNTIME, AND MISC. REPORTING FORM* 161-CAAPP STANDARD CONDITIONS (REVISED 11/16/94) - (REVISED 11/16/94) - (REVISED 11/16/94) DELEGATION OF AUTHORITY FOR RESPONSIBLE OFFICIAL TO A REPRESENTATIVE* (REVISED 11/16/94) - (REVISED 11/16/94) 500-CAAPP 505-CAAPP SUPPLEMENT TO CAAPP APPLICATION* (REVISED 11/16/94) REGULATIONS STATE OF ILLINOIS RULES AND REGULATIONS (AIR POLLUTION) ILLINOIS ENVIRONMENTAL PROTECTION ACT COPIES OF FEDERAL RULES MAY BE OBTAINED FROM U.S. EPA - REGION V, 77 WEST JACKSON BOULEVARD. CHICAGO, IL. 60604 - (312) 353-2000.

*SIGNATURE REQUIRED ON FORM

FORMS MAY BE COPIED BY THE APPLICANT AS NECESSARY

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT-SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR A	PPLICANT'S USE
Revision #:	
Date:	_ / /
Page	of
Source Des	signation:

APPLICATION FOR CAAPP PERMIT ID NUMBER:					
(CHECK ONLY ONE,					
		PERMIT #:			
RENEWAL APPLICATION	N	DATE:	<u> </u>		
SIGNIFICANT MODIFICA	ATION	DATE.			
	SOURCE IN	FORMATION			
1) SOURCE NAME:	SOURCE IIVI	FURMATION	2) DATE FORM COMPLETED:		
Donall andfill					
Pagel Landfill 3) SOURCE STREET ADDRESS:					
8403 Lindenwood Road					
84U3 LINGENWOOD 4) CITY:	Road		5) ZiP:		
Rockford			61109		
6) IS THE SOURCE LOCATED WITHIN C	CITY LIMITS?		O yes 🗴 NO		
7) TOWNSHIP NAME:	8) COUNTY:		9) TYPICAL NO. OF EMPLOYEES AT THE SOURCE:		
36	Winneb		DI OVER IDENTIFICATION NO		
10) ILLINOIS AIR POLLUTION SOURCE ID NO. 11) FEDERAL EMPLOYER IDENTIFICATION NO. (FEIN): 338–36–5052					
12) TYPE OF SOURCE AND PRODUCTS PRODUCED:					
Landfill & Sludge Dryer					
13) PRIMARY STANDARD INDUSTRIAL	CLASSIFICATION (SI	C) CATEGORY:	14) PRIMARY SIC NO.:		
Trans. & Utilities - Refuse Systems			4953		
15a) LATITUDE (DD:MM:SS):	b) LONGITUDE (D	D:MM:SS):			
16a) UTM ZONE:	b) UTM VERTICAL (K	[c) UTM HORIZONTAL (KM):		
·					
17a) COORDINATE METHOD:	b) REFERENCE LOC	ATION:	c) COORDINATE ACCURACY:		
18) SOURCE ENVIRONMENTAL CONTA	ACT PERSON:	19) CONTACT PE	RSON'S TELEPHONE NO.:		
		815-87			
Thomas Hilbert		0,007			

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER. FOR APPLICANT'S USE

OWNER INFORMATION 20) NAME:						
Winnebago Reclamation Service, Inc.						
21) ADDRESS:						
4920 Forest Hills Road						
22) CITY:	23) STATE:		24) ZIP:			
Loves Park 25) OWNER'S AGENT (IF APPLICABLE	<u>Illinois</u>		61111			
Gary L. Marzora	Gary L. Marzorati					
	OPERATOR IN	ORMATION				
26) NAME:						
Winnebago Reclamation Service, Inc.						
27) ADDRESS:						
4920 Forest Hills Road						
28) CITY:	29) STATE:		30) ZIP:			
Loves Park	Illinois		61111			
	BILLING INFO	RMATION				
31) NAME:						
Winnebago Reclamation Service, Inc.						
32) ADDRESS:						
4920 Forest Hills Road						
33) CITY: 34) STATE: 35) ZIP:						
Loves Park Illinois 61111		61111				
36) CONTACT PERSON:		37) CONTACT PER	RSON'S TELEPHONE NO.:			
Gary L. Marzora	ti					
	ADDI ICANT INI	EODMATION.				
APPLICANT INFORMATION 38) WHO IS THE PERMIT 39) ALL CORRESPONDENCE						
APPLICANT? (CHECK ONE): OWN		(CHECK ONE)	OWNER O SOURCE			
	RATOR		OPERATOR OPERATOR			
40) ATTENTION NAME AND/OR TITLE	FOR WRITTEN CORRES	PONDENCE:				
Gary L. Marzorat	i					
41) TECHNICAL CONTACT PERSON F	OR APPLICATION:	42) CONTACT	PERSON'S TELEPHONE NO.:			
Thomas Hilbert 815-874-4806						

SUMMARY OF APPLICATION CONTENTS		
NOTE: ITEMS 43 TO 61 WILL BE USED FOR APPLICATION COMPLETENESS DETERMINATION.		
43) DOES THE APPLICATION INCLUDE A TABLE OF CONTENTS?	X YES	O NO
44) DOES THE APPLICATION INCLUDE A LIST OF ALL ITEMS AND ACTIVITIES FOR WHICH A PERMIT IS BEING SOUGHT?	X YES	O NO
45) DOES THE APPLICATION INCLUDE A PLOT PLAN AND/OR MAP DEPICTING THE AREA WITHIN ONE-QUARTER MILE OF THE SOURCE?	X YES	O NO
46) DOES THE APPLICATION INCLUDE A PROCESS FLOW DIAGRAM(S) SHOWING ALL EMISSION UNITS AND CONTROL EQUIPMENT, AND THEIR RELATIONSHIP?	X YES	O NO
47) DOES THE APPLICATION INCLUDE A COMPLETE PROCESS DESCRIPTION FOR THE SOURCE?	X YES	O NO
48a) DOES THE APPLICATION INCLUDE THE APPROPRIATE, COMPLETED FORMS FOR ALL INDIVIDUAL EMSSION UNITS AND AIR POLLUTION CONTROL EQUIPMENT, LISTING ALL APPLICABLE REQUIREMENTS AND PROPOSED EXEMPTIONS FROM OTHERWISE APPLICABLE REQUIREMENTS?	X YES	O NO
b) DOES THE APPLICATION ADDRESS OTHER MODES OF OPERATION FOR WHICH A PERMIT IS BEING SOUGHT?	*NA X	YES NO
c) DOES THE APPLICATION INCLUDE ALL REASONABLY ANTICIPATED OPERATING SCENARIOS FOR WHICH A PERMIT IS BEING SOUGHT?	*NA X	YES ONO
49) DOES THE APPLICATION INCLUDE A COMPLETED "FUGITIVE EMISSION" FORM 391- CAAPP?	X YES	O NO
50) DOES THE APPLICATION INCLUDE A COMPLETED "FEE DETERMINATION FOR CAAPP PERMIT" FORM 292-CAAPP? (NOTE: FEES WILL BE BASED UPON INFORMATION CONTAINED IN THIS FORM.)	X YES	O NO
51) DOES THE APPLICATION INCLUDE A COMPLETED "HAZARDOUS AIR POLLUTANT EMISSION SUMMARY" FORM 215-CAAPP?	X YES	O NO
DOES THE APPLICATION INCLUDE THE CALCULATIONS ON WHICH THE FOLLOWING, TO THE EXTENT THEY ARE RELATED TO AIR EMISSIONS, WERE BASED: POLLUTANT EMISSION RATES,	X YES	O NO
FUELS AND RAW MATERIALS USAGE, AND CONTROL EQUIPMENT EFFICIENCY?		
53) DOES THE APPLICATION INCLUDE A COMPLETED "COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE FOR CAAPP PERMIT" FORM 293-CAAPP?	X YES	O NO

54)	DOES THE APPLICATION INCLUDE A COMPLETED "COMPLIANCE CERTIFICATION" FORM 296-CAAPP?	X YES	О мо
55)	OF COMPLIANCE-ADDENDUM FOR NONCOMPLYING EMISSION UNITS" FORM 294- CAAPP FOR ONE OR MORE NONCOMPLIANT EMISSION UNITS FOR WHICH ISSUANCE OF A CAAPP PERMIT IS REQUESTED?	*NA X	
	HAS THE APPLICANT RETAINED A COPY OF THIS APPLICATION AT THE SOURCE? (NOTE: ONLY THE ORIGINAL APPLICATION NEED BE INITIALLY SUBMITTED, HOWEVER, THE AGENCY MAY REQUEST UP TO 4 COPIES OF THE FINAL APPLICATION PRIOR TO PUBLIC NOTICE.)	X YES	□ NO
57 a	DOES THE APPLICATION CONTAIN CONFIDENTIAL INFORMATION?	YES	₩ NO
b) IF YES, HAS SUCH INFORMATION BEEN PROPERLY MARKED AND CLAIMED, AND COPIES OF THE APPLICATION SUITABLE FOR PUBLIC INSPECTION BEEN SUBMITTED, IN ACCORDANCE WITH APPLICABLE REGULATIONS?	YES	□ NO
58)	DOES THE APPLICATION INCLUDE AN EARLY REDUCTION DEMONSTRATION FOR HAZARDOUS AIR POLLUTANTS (HAP) PURSUANT TO SECTION 112(i)(5) OF THE CLEAN AIR ACT AS AMENDED IN 1990?	*NA O	
59)	DOES THE APPLICATION INCLUDE A PROPOSED DETERMINATION OF MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY (MACT) FOR HAZARDOUS AIR POLLUTANTS PURSUANT TO SECTION 112 OF THE CLEAN AIR ACT AS AMENDED IN 1990?	*NA O	
60)	HAS THE APPLICANT REGISTERED A RISK MANAGEMENT PROGRAM FOR ACCIDENTAL RELEASES PURSUANT TO SECTION 112(r) OF THE CLEAN AIR ACT AS AMENDED IN 1990 OR INTENDS TO COMPLY WITH THIS REQUIREMENT IN ACCORDANCE WITH ITS COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE?	*NA O	
61)	DOES THE APPLICATION REQUEST TO UTILIZE THE OPERATIONAL FLEXIBILITY PROVISIONS AND INCLUDE THE INFORMATION REQUIRED FOR SUCH USE?	X YES	Ои
62a)	DOES THE APPLICANT HEREBY REQUEST A PERMIT SHIELD FOR THE ENTIRE SOURCE?	X YES	O NO
b)	IF NO, DOES THE APPLICATION CONTAIN A REQUEST FOR A PERMIT SHIELD FOR SPECIFIC ITEMS ONLY, IN ACCORDANCE WITH THE INSTRUCTIONS FOR A CAAPP PERMIT?	X YES	O NO
63)	DOES THE APPLICATION INCLUDE A COMPLETED "LISTING OF INSIGNIFICANT ACTIVITIES" FORM 297-CAAPP?	X YES	Ои

64) WH	Y IS THE APPLICANT APPLYING FOR A CAAPP PERMIT (CHECK ALL THAT APPLY)?		
	THE POTENTIAL TO EMIT ONE OR MORE AIR POLLUTANTS FOR THE SOURCE IS 10 GREATER.	00 TONS/YEA	R OR
	THE SOURCE IS AN AFFECTED SOURCE FOR ACID RAIN DEPOSITION.		}
	THE POTENTIAL TO EMIT VOM OR NOX IS 25 TONS/YEAR OR MORE AND THE SOUP OF THE FOLLOWING CHICAGO AREA COUNTIES OR TOWNSHIPS:	RCE IS LOCA	TED IN ONE
	COOK COUNTY DUPAGE COUNTY KANE COUNTY LAKE COUNTY McHENRY COUNTY McHENRY COUNTY WILL COUNTY AUX SABLE TOWNSHIP, GRUNDY COUNTY OSWEGO TOWNSHIP, KENDALL COUNTY	ΤΥ	
	THE POTENTIAL TO EMIT AN INDIVIDUAL HAZARDOUS AIR POLLUTANT IS 10 TONS THE POTENTIAL TO EMIT ALL SOURCE WIDE HAZARDOUS AIR POLLUTANTS IS 25 OR MEETS AN APPLICABLE LOWER THRESHOLD.	TONGITURE	O(CIMOTAL)
\boxtimes	THE SOURCE CONTAINS EQUIPMENT OR OPERATIONS SUBJECT TO CERTAIN USI STANDARDS (NSPS AND NESHAP) FOR WHICH USEPA REQUIRES A CAAPP PERMI	EPA EMISSIO IT.	N
65) DO	ES THE APPLICATION INCLUDE A DRAWING PROVIDING THE SOURCE LAYOUT?	X YES	ОиО
IF I DE	NO, PLEASE NOTE THAT THE AGENCY MAY REQUEST SUCH A DRAWING UPON TAILED REVIEW OF THE APPLICATION.		
	E ACTUAL EMISSIONS OF THE SOURCE BELOW THE APPLICABILITY LEVELS FOR CAAPP PERMIT?	X YES	O NO
CO SU	ES THE APPLICATION CONTAIN PROPOSED PERMIT LIMITATIONS THAT WILL INSTRAIN THE EMISSIONS AND PRODUCTION OR OPERATION OF THE SOURCE CHITHAT POTENTIAL EMISSIONS OF THE SOURCE WILL FALL BELOW THE VELS FOR WHICH A CAAPP PERMIT IS REQUIRED?	YES	⊗ NO
OP OR BE	ES THE APPLICANT HEREBY REQUEST A FEDERALLY ENFORCEABLE STATE FEATING PERMIT (FESOP) CONSTRAINING THE EMISSIONS AND PRODUCTION OPERATION OF THE SOURCE SUCH THAT POTENTIAL EMISSIONS WOULD FALL LOW APPLICABILITY LEVELS AND THEREBY EXCLUDE THE SOURCE FROM EQUIRING A CAAPP PERMIT?	YES	⊗ no
IN EM	R SIGNIFICANT MODIFICATIONS, DOES THE APPLICATION INCLUDE A SCRIPTION OF THE PROPOSED CHANGE(S), INCLUDING ALL PHYSICAL CHANGES EQUIPMENT, CHANGES IN THE METHOD OF OPERATION, CHANGES IN TISSIONS, AND ANY NEW APPLICABLE REQUIREMENTS WHICH WILL APPLY AS A SULT OF THE PROPOSED CHANGE?	YES	⊗ no
	SIGNATURE BLOCK		
NOTE; T	HIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A	SIGNED CERT	IFICATION
68) I CE INQ	WILL BE RETURNED AS INCOMPLETE. ERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORM UIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE MPLETE.	MED AFTER R	EASONABLE
TUA	THORIZED SIGNATURE:		_
BY			ineer
	130110000000000000000000000000000000000	SIGNATORY	
	Thomas Hilbert 02 , 2	<u>2</u>	99
	TYPED OR PRINTED NAME OF SIGNATORY DA	ATE	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AP	PLICANT'S USE
Revision #:	
Date:	_ / /
Page	of
Source Desi	gnation:

AIR POLLUTION CONTROL EQUIPMENT DATA AND INFORMATION

FOR AGENCY USE ONLY	
ID NUMBER:	
CONTROL EQUIPMENT #:	
DATE:	

THIS FORM MUST BE COMPLETED FOR EACH AIR POLLUTION CONTROL EQUIPMENT. COMPLETE AND PROVIDE THIS FORM IN ADDITION TO THE APPLICABLE ADDENDUM FORM 260-A THROUGH 260-K. A SEPARATE FORM MUST BE COMPLETED FOR EACH MODE OF OPERATION OF AIR POLLUTION CONTROL EQUIPMENT FOR WHICH A PERMIT IS BEING SOUGHT.

SOURCE INFORMATION

CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

FOR APPLICANT'S USE

APPLICATION PAGE	AΡ	PL	.ICA	ΓΙΟΝ	ŀΡΑ	GE
------------------	----	----	------	------	-----	----

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992,

Printed on Recycled Paper 260-CAAPP

11) LIST ALL EMISSION UNITS AND OTHER CONTROL EQU	IPMENT DUCTING EMISSIONS TO THIS CONTROL
EQUIPMENT: NAME	DESIGNATION OR CODE NUMBER
12) DOES THE CONTROL EQUIPMENT HAVE MORE THAN OF	AD LES CONO
IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVER A SEPARATE AIR POLLUTION CONTROL EQUIPMENT FO COMPLETED FOR EACH MODE):	
see 260j and 260K	
13) IDENTIFY ALL ATTACHMENTS TO THIS FORM RELATED TECHNICAL DRAWINGS):	TO THIS AIR POLLUTION CONTROL EQUIPMENT(E.G.,
OPERATING	
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMEN MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING E IN OPERATION:	IT WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE
15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE F	EEDING EMICRION UNIT (COMPET)
EQUIPMENT IS/ARE NOT USED:	EEDING EMISSION UN(1(S) WHEN THE CONTROL
NICTUR CONTROL COURSE	
b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL O FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION?	THER TIMES THAT THE X YES NO
IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE ODOWNTIME:	CONTROL EQUIPMENT

APPLICATION PAGE

Printed on Recycled Paper 260-CAAPP

	COMPLIAN	CE INFORMATION			7
21) IS THE CONTROL SY REQUIREMENTS?	STEM IN COMPLIANCE WITH A		X YES	O NO	
IF NO, THEN FORM 2 COMPLYING EMISSION	94-CAAPP "COMPLIANCE PLAN ON UNITS" MUST BE COMPLET	N/SCHEDULE OF COMPLIANCE ED AND SUBMITTED WITH TH	- ADDENDUM F IS APPLICATION	FOR NON	
22) EXPLANATION OF HO	OW INITIAL COMPLIANCE IS TO	BE, OR WAS PREVIOUSLY, D	EMONSTRATED:		
23) EXPLANATION OF HO	W ONGOING COMPLIANCE WI	LL BE DEMONSTRATED:	·		-
NSPS Munic	cipal Solid Wast	e Landfill Gas C	Control &	Monitori	ng System
· ·					
TES	TING, MONITORING, REC	CORDKEEPING AND REF	PORTING		
24a) LIST THE PARAMETE DETERMINE FEES, RI	RS THAT RELATE TO AIR EMIS ULE APPLICABILITY OR COMPI REMENT, AND THE FREQUENC	SIONS FOR WHICH RECORDS	ARE BEING MAI	YT THE I	
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREC	UENCY	

RECORDED PARAME	TER INCLUDE THE METHOD O	ORDS WILL BE CREATED AND OF RECORDKEEPING, TITLE OF	F PERSON RESPONSIBLE FOR
RECORDKEEPING, A	ND TITLE OF PERSON TO COM	ITACT FOR REVIEW OF RECOI	RDS:
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON
			1
c) IS COMPLIANCE OF TH REVIEW OF THE RECO	IE CONTROL EQUIPMENT REA IRDS?	DILY DEMONSTRATED BY	X YES NO
IF NO, EXPLAIN:			
d) ARE ALL RECORDS RE	ADILY AVAILABLE FOR INSPE	CTION, COPYING AND/OR	X YES NO
SUBMITTAL TO THE AG	BENCY UPON REQUEST?		LX YES U NO
IF NO, EXPLAIN:			
25a) DESCRIBE ANY MONE COMPLIANCE:	TORS OR MONITORING ACTIV	ITIES USED TO DETERMINE FI	EES, RULE APPLICABILITY OR
COMPENNOL.			
b) WHAT OPERATING PAI	RAMETER(S) IS(ARE) BEING M	ONITORED (E.G., COMBUSTIO	N CHAMBER TEMPERATURE)?
A) DECODING TUE LOCAT	TION OF EACH MONITOR /E G	, EXIT OF COMBUSTION CHAN	(BER).
c) DESCRIBE THE LOCA	NON OF EACH MONITOR (E.G.	, EXT OF COMISSION CHAN	nideas y.

25d) IS EACH MONITOR EQUIPPER	WITH A RECORDING DEVI	CE?	(X) YES	NO			
IF NO, LIST ALL MONITORS V			120				
Following NSPS, 40 CFR Subpart WWW.							
e) IS EACH MONITOR REVIEWED	FOR ACCURACY ON AT LEA	AST A QUARTERLY	X YES	O NO			
BASIS?	101(70001010101101111111111111111111111		△ YES	∪ NO			
IF NO, EXPLAIN:	•						
Following NSPS, 40 CF	R Subpart WWW.						
f) IS EACH MONITOR OPERATED	AT ALL TIMES THE CONTR	OLEO LIDMENT IS IN	(V)				
OPERATION?	AT ALL TIMES THE CONTR	OF EGOILMENT 12 HA	X YES	∪ №			
IF NO, EXPLAIN:							
Following NSPS, 40 C	FR Subpart WWW.						
26) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 260-1:							
OPERATING TEST DATE TEST METHOD TESTING COMPANY CONDITIONS SUMMARY OF RESULTS							
TEST DATE TEST METHOD	TESTING COMPANT	CONDITION	J				
	_		_				
27) DESCRIBE ALL REPORTING R	QUIREMENTS AND PROVID	E THE TITLE AND FR	REQUENCY OF REPOR	रा			
SUBMITTALS TO THE AGENCY	:						
REPORTING REQUIREMENTS	TITLE OF RE	PORT	FREQUENCY				
·							
28) DESCRIBE THE CAPTURE SYS	CAPTURE AND		OPT EMISSIONS TO	TUS			
CONTROL EQUIPMENT, INCLU	DE ALL HOODS, DUCTS, FA	ANS, ETC. ALSO INCI	.UDE THE METHOD O	F ÇAPTURE			
USED AT EACH EMISSION PO	NT. (IF ADDITIONAL SPACE	IS NEEDED, ATTACH	AND LABEL AS EXH	BH 260-2):			
				'			

APPLICATION PAGE

	ARE FEATURES OF THE C DIAGRAM CONTAINED IN	APTURE SYSTEM ACCURATELY THIS APPLICATION?	Y DEPICTED IN THE FLOW	X YES U NO
	IF NO, A SKETCH SHOWIN ATTACHED AND LABELED	NG THE FEATURES OF THE CAP O AS EXHIBIT 260-3:	TURE SYSTEM SHOULD BE	
	DESTRUCTION/REMOVAL COMBINATION OF THE CATO BE CONTROLLED. AT	INIMUM AND TYPICAL) CAPTUR EFFICIENCY, AND THE OVERAL APTURE SYSTEM AND CONTRO TACH THE CALCULATIONS, TO CIES WERE BASED AND LABEL	LL REDUCTION EFFICIENCY F L EQUIPMENT FOR EACH REI THE EXTENT THEY ARE AIR F	PROVIDED BY THE SULATED AIR POLLUTANT
a)	CONTROL PERFORMANC	Œ:		
	REGULATED AIR	CAPTURE SYSTEM EFFICIENCY (%)	CONTROL EQUIPMENT EFFICIENCY (%)	OVERALL REDUCTION EFFICIENCY (%)
	POLLUTANT	(MIN) (TYP)	(MIN) (TYP)	(MIN) (TYP)
i	<u>.</u>			
ű.	<u> </u>			
# 1				
iv.	EXPLAIN ANY OTHER RE COOLANT TEMPERATURE	QUIRED LIMITS ON CONTROL EQUIF ;, ETC.:	PMENT PERFORMANCE SUCH AS	OUTLET CONCENTRATION,
	Following NSPS 4	10 CFR Subpart WWW.		İ
	1 ollowing 1401 0, -	or it ouppair viviv.		
b)	METHOD USED TO DETE	RMINE EACH OF THE ABOVE EF RANTEE, ETC.) AND THE DATE	FFICIENCIES (E.G., STACK TE LAST TESTED, IF APPLICABL	ST, MATERIAL BALANCE, E:
	, . , . ,	,		DATE LAST
-	CAPTURE:	EFFICIENCY DETERMINATION METI-	HOD	TESTED
ļ	CAPIUNE.			
L				
-	CONTROL:			
- -	CONTROL:			
-				
		CE:		
	OVERALL:	CE: CAPTURE CONTR		
	OVERALL:		IENT REDUCTION NCY EFFICIENCY	APPLICABLE RULE
c)	OVERALL: REQUIRED PERFORMAN REGULATED AIR	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE	IENT REDUCTION NCY EFFICIENCY	APPLICABLE RULE
c)	OVERALL: REQUIRED PERFORMAN REGULATED AIR	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE	IENT REDUCTION NCY EFFICIENCY	APPLICABLE RULE
C)	OVERALL: REQUIRED PERFORMAN REGULATED AIR	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE	IENT REDUCTION NCY EFFICIENCY	APPLICABLE RULE
c)	OVERALL: REQUIRED PERFORMAN REGULATED AIR	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE	IENT REDUCTION NCY EFFICIENCY	APPLICABLE RULE
C)	OVERALL: REQUIRED PERFORMAN REGULATED AIR POLLUTANT EXPLAIN ANY OTHER RE	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE (%) (%) EQUIRED LIMITS ON CONTROL EQUIPM	REDUCTION EFFICIENCY (%)	
C)	OVERALL: REQUIRED PERFORMAN REGULATED AIR POLLUTANT	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE (%) (%) EQUIRED LIMITS ON CONTROL EQUIPM	REDUCTION EFFICIENCY (%)	
C)	OVERALL: REQUIRED PERFORMAN REGULATED AIR POLLUTANT EXPLAIN ANY OTHER RE	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE (%) (%) EQUIRED LIMITS ON CONTROL EQUIPM	REDUCTION EFFICIENCY (%)	
C)	OVERALL: REQUIRED PERFORMAN REGULATED AIR POLLUTANT EXPLAIN ANY OTHER RE	CAPTURE CONTR SYSTEM EQUIPM EFFICIENCY EFFICIE (%) (%) EQUIRED LIMITS ON CONTROL EQUIPM	REDUCTION EFFICIENCY (%)	

List Part Tours Part Actual Emission Rate Tours Part Actual Emission Rate Tours Part Actual Emission Rate Tours Part						(31)E	MISSION	(31)EMISSION INFORMATION					
TONS PER 30THER 40M 5FATE UNITS) APPLICABLE TONS PER TONS PER				1ACTUAL	EMISSION	RATE		ALLOWAE	3LE BY I	RULE EMISSH	ON RATE	PERMITTED EMIS	SSION RATE
See Appendix A () () () () () () () (ן ד	BS PER HOUR BS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	4DM	1	NITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	1	TONS PER YEAR (TONS/YR)
See Append X A () () () () () () () () () (AUM:								^				
See 213 () () () () () () () () () (الجا								<u> </u>				
See By C ()	5	ید		·)	(
See Appendix A () () () () () () () () () (₹	.,					<u>-</u>)	^				
See Add () () () () () () () () () (Ę	i:)	(
500 219 69DSCF () () () () () () () () () (ਵ	.,				Se))				
500 219 () <td> # </td> <td>JAK:</td> <td></td> <td></td> <td></td> <td>ee</td> <td></td> <td></td> <td>^</td> <td></td> <td></td> <td></td> <td></td>	#	JAK:				ee			^				
A	•	از				Αp		_					
500 219 GRDSCE () () () () () () () () () (TUM:				ре)	<u> </u>				
X		AĽ:				nd)	^				
5.00 21.9 CFUDSCF () () () () () () () () () (AUN:				Χ		~	^				
5:00 21:9 0.3		끍				4		J	_				
5.00 219 03 () () () () () () () () () (AGK:						_	<u> </u>				
5.00 21.9 0.3 1 6.0 (LBSHR) 212.327 26.28 55.LBSHR 272.327 19.80		.;})	^				18.8
5.00 219 0.3 7 & O (LBSAHR) 212.327 26.28 \$ 55.LBSAHR 4.00 14.4 CO (20.00 or control		KUM:)	(
5.00 21.9 0.3 4 6.0 (LBSAHR) 212.327 26.28 5.5 (LBSAHR) 4.00 14.4 0.24 4 5.5 (LBSAHR) 272.327 19.80		رد											A STATE OF THE STA
4.00 (4.4 0.24 A 5.5 (LBSHR) 272.32.1		CK.	200	21.9	03 GRDSCF		1	60 (LBSA	#	212.321	26.28	S 5 LBSAIR	22
		ر ا	80.4	144	0.24		•	5.5 (LBS)	FF)	212 321	19.80		

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-5.

¹PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).

²PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GRUDSCF, ETC.)

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS)

⁵RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

	ACTUAL EI	ACTUAL EMISSION RATE			ALLOWABLE BY RULE	w
	POUNDS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	4DM	⁵ RATE OR STANDARD	APPLICABLE RULE
_						
					2-1	
-						
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				5		
	10.0	1,2		2	98% by wt control device	CFP 61
A 20	8.0	0.8		2	leak-tiofil tracks	61.302(b) (d)

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-6.

1PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).
2-CAS - CHEMICAL ABSTRACT SERVICE NUMBER.
3-LEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM. GRUDSCF, ETC.).
4-DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).
5-RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

EXHAUST POINT INFORMATION						
33) DESCRIPTION OF EXHAUST POINT DISCHARGES INDOORS, DO NOT C			ORS, ETC.). IF THE EXHAUST POINT			
34) DISTANCE TO NEAREST PLANT BO	UNDARY FROM EXI	AUST POINT DISCH	IARGE (FT):			
35) DISCHARGE HEIGHT ABOVE GRAD	€ (FT):					
36) GOOD ENGINEERING PRACTICE (G	EP) HEIGHT, IF KNC	OWN (FT):				
37) DIAMETER OF EXHAUST POINT (FT 1.128 TIMES THE SQUARE ROOT O		ON CIRCULAR EXHA	UST POINT, THE DIAMETER IS			
38) EXIT GAS FLOW RATE	a) MAXIMUM (ACF	-M):	b) TYPICAL (ACFM):			
39) EXIT GAS TEMPERATURE	a) MAXIMUM (°F):		b) TYPICAL (*F):			
40) DIRECTION OF EXHAUST (VERTICA	L, LATERAL, DOWN	WARD):				
41) LIST ALL EMISSION UNITS AND CO	NTROL DEVICES SE	RVED BY THIS EXH.	AUST POINT:			
NAME		FLO	W DIAGRAM DESIGNATION			
(a)						
b)						
c)						
d)						
e)						
n						
9)						
42) WHAT PERCENTAGE OF THE CONTROL EQUIPMENT EMISSIONS ARE BEING DUCTED TO THIS						
42) WHAT PERCENTAGE OF THE CONT EXHAUST POINT (%)?	ROL EQUIPMENT EI	MISSIONS ARE BEIN	IG DUCTED TO THIS			
43) IF THE PERCENTAGE OF THE CON- NOT 100%, THEN EXPLAIN WHERE						
			,			
THE FOLLOWING INFORMATION NEED ONLY 44a) LATITUDE:	BE SUPPLIED IF READ	ILY AVAILABLE. b) LONGITUDE:				
, ·····		_,,				
45) UTM ZONE:	b) UTM VERTICAL	(KM):	c) UTM HORIZONTAL (KM):			
	<u> </u>					

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APP	PLIC	ANT	'S L	<u>ISE</u>	
Revision #:					
Date:	_ / _		_ /		
Page		of			
Source Designation:					

SUPPLEMENTAL FORM AIR POLLUTION CONTROL EQUIPMENT FLARE (260J)

	anzervacienenousecons/ale	
ID NUMBER:	201-801-AAF	
CONTROL EC	QUIPMENT#:	
DATE:		
IFORMATIO	DN .	

	NFORMATION				
1) FLOW DIAGRAM DESIGNATION OF FLARE:					
TI ADT (OCTIVIE)	L) MANUALINA CADACITY OF ELABE (SCE/UD):				
2a) MAXIMUM CAPACITY OF FLARE (SCF/MIN):	b) MAXIMUM CAPACITY OF FLARE (SCF/HR):				
l 1000					
3a) NATURAL GAS FLOW RATE TO FLARE PILOT FLAME	b) NATURAL GAS FLOW RATE TO FLARE PILOT				
(SCFM/MIN):	FLAME (SCF/HR):				
4) IS PILOT FLAME EQUIPPED WITH A MONITOR?					
	YES NO				
·					
IF YES, WHAT TYPE? (CHECK ONE)					
	ULTRA UCAMERA WITH RA-RED VIOLET MONITORING				
THERIVIOGOUPEE INVI	RA-RED VIOLET MONITORING CONTROL ROOM				
OTHER, DESCRIBE:					
TOTHER, DESCRIBE:					
C) (O ELADE OTEAN ACCIOTEDO					
5) IS FLARE STEAM ASSISTED?					
·	U YES U NO				
6) IS FLARE CONSIDERED SMOKELESS?					
O) IS FLAKE CONSIDERED SMOKELESS:	O O I				
	U YES U NO				
7a) FLARE TIP DIAMETER (INCHES):	b) TEMPERATURE OF FLARE GAS (DEGREES F°):				
1 Sept 10 1 Sept 10 10 10 10 10 10 10 10 10 10 10 10 10					
	4.500 (6				
	1,500 (typical)				
	1,500 (typical)				

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE _

Printed on Recycled Paper 260J-CAAPP

FOR APPLICANT'S USE

8) INLET EMISSION STREAM PARAMETERS:			
	MAX		TYPICAL
PRESSURE (mmHG):			
HEAT CONTENT (BTU/SCF):			
TIENT CONTENT (S. G.OC).		(%)	(%)
OXYGEN CONTENT:			
MOISTURE CONTENT:		(%)	(%)
RELATIVE HUMIDITY:		(%)	(%)
REATIVE HOWIGHT.			
ARE HALOGENATED ORGANICS PRESENT?		1	:
	U YES L) NO	
ARE PARTICULATES PRESENT?	U YES L) no	
ARE METALS PRESENT?	YES C) NO	
9a) MAXIMUM RATE DURING EMERGENCY FOR ONE MAJOR	R PIECE OF EQUIPME	NT OR PROC	ESS UNIT (SCF/MIN):
b) MAXIMUM RATE DURING EMERGENCY FOR ONE MAJOR	R PIECE OF EQUIPME	NT OR PROCE	ESS UNIT (BTU/MIN):
10a) TYPICAL OPERATING RATE (SCF/MIN):	b) TYPICAL OPER	ATING RATE	(BTH/MIN):
(va)			(O) GAMINA,
11) FLARE OPERATING PARAMETERS:			
11) FLARE OPERATING PARAMETERS.	DURING MAXIMUM OPERATION OF		DURING TYPICAL OPERATION OF
	FEEDING UNIT(S)		FEEDING UNIT(S)
INLET GAS TEMPERATURE (DEGREES F°):			
INLET GAS FLOW RATE (SCFM):			
EFFICIENCY A COM DEDUCTIONS		(%)	(%)
EFFICIENCY (VOM REDUCTION):		(8()	
EFFICIENCY (OTHER; SPECIFY REGULATED AIR POLLUTANT		(%)	(%)
);			

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL - PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE			
Revision #:			
Date:	_ /		1
Page		of .	
Source Designation:			

SUPPLEMENTAL FORM
AIR POLLUTION CONTROL
EQUIPMENT
OTHER TYPE OF CONTROL (260K)

FOR AGENCY USE ONLY
D NUMBER:
CONTROL EQUIPMENT #:
DATE:

815 874 4806

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER. FOR APPLICANT'S USE

APPLICATION PAGE _

4) INLET EMISSION STREAM PARAMETERS:		
	MAX	TYPICAL
PRESSURE (mmHG):		
	(%)	(%)
OXYGEN CONTENT:	(70)	(**)
	(%)	(%)
MOISTURE CONTENT:		
RELATIVE HUMIDITY:	(%)	(%)
RELATIVE HOMIDITY:		
5a) ARE HALOGENATED ORGANICS PRESENT?		
on, and an executive of the same of the sa	YES NO	
b) ARE PARTICULATES PRESENT?		
D) ARE PARTICULATES PRESENT!	X YES NO	
A ADD MOTHER CONTROL	63 123 C NO	
c) ARE METALS PRESENT?	YES X NO	
	C YES (ZY NO	
6) CONTROL OPERATING PARAMETERS:		
	DURING MAXIMUM OPERATION OF	DURING TYPICAL OPERATION OF
	FEEDING UNIT(S)	FEEDING UNIT(S)
INLET GAS TEMPERATURE (DEGREES F°):	700	788
INLET GAS FLOW RATE (SCFM):	909	788
EFFICIENCY (SPECIFY REGULATED AIR	(%)	(%)
POLLUTANT		
	(%)	(%)
EFFICIENCY (SPECIFY REGULATED AIR POLLUTANT	98+	98+
POLLUTANT NMOC		

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506

SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE	
Revision #:	
Date: / /	
Page of	
Source Designation:	
	_

PROCESS EMISSION UNIT DATA AND INFORMATION

	OR AGE	
ID NUMBER:		
EMISSION PO	INT #:	
DATE:		

SOURCE	NFORMATION
1) SOURCE NAME: Pagel Landfill	
2) DATE FORM PREPARED:	3) SOURCE ID NO. (IF KNOWN): 201-801-AAF

GENERAL I.	NFORMATION
4) NAME OF EMISSION UNIT: Pagel Landfill	
5) NAME OF PROCESS:	
Pagel Landfill - generating l	andfill das
Pagel Landfill - generating I	ariaini gas
7) DESCRIPTION OF ITEM OR MATERIAL PRODUCED OR A	ACTIVITY ACCOMPLISHED:
8) FLOW DIAGRAM DESIGNATION OF EMISSION UNIT:	
N/A	
9) MANUFACTURER OF EMISSION UNIT (IF KNOWN):	
N/A	
10) MODEL NUMBER (IF KNOWN):	11) SERIAL NUMBER (IF KNOWN):
N/A	N/A
12) DATES OF COMMENCING CONSTRUCTION, OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EMISSION UNIT (ACTUAL OR PLANNED)	a) CONSTRUCTION (MONTH/YEAR):
* · · · · · · · · · · · · · · · · · · ·	b) OPERATION (MONTH/YEAR):
	c) LATEST MODIFICATION (MONTH/YEAR):
13) DESCRIPTION OF MODIFICATION (IF APPLICABLE):	

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991. AS AMENDED 1992. CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

Printed on Recycled Paper 220-CAAPP

FOR APPLICANT'S USE

14) DOES THE EMISSION UNIT HA	VE MO	RE THAN OF	NE MOI	DE OF C	PERATION?)	O YE	S	O NO
IF YES, EXPLAIN AND IDENTIF' A SEPARATE PROCESS EMISS FOR EACH MODE):	Y WHIC	CH MODE IS NIT FORM 22	COVEI	RED BY PP MUS	THIS FORM T BE COMP	(NOTE: LETED			
15) PROVIDE THE NAME AND DES	IGNAT	ION OF ALL	AIR PC	LLUTIO	N CONTROL	. EQUIPMENT	CONTR	OLLIN	G THIS
EMISSION UNIT, IF APPLICABL MUST BE COMPLETED FOR EA	E (FOR	RM 260-CAAF	PP AND	THE A	PROPRIATI	E 260-CAAPP	ADDEN	DUM F	ORM
			•						
16) WILL EMISSIONS DURING STA	DTIID	EYCEED EIT	HER T	HE ALL	NAARI E EM	ISSION	$\overline{\Box}$		$\overline{}$
RATE PURSUANT TO A SPECIF ESTABLISHED BY AN EXISTING	FIC RU	ILE, OR THE	ALLOV	VABLE E	MISSION LI	MIT AS	U YE	S	U NO
IF YES, COMPLETE AND ATTAG EXCESS EMISSIONS DURING S					TO OPERA	TE WITH			
17) PROVIDE ANY LIMITATIONS OF STANDARDS (E.G., ONLY ONE	N SOU	RCE OPERA	TION A	FFECTI	NG EMISSIC	ONS OR ANY V	VORK P	RACTI	CE
017 WED (12.0., 0112) 0112	O			, ,					
									
		OPERAT	ING I	NEOR	VATION				
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO BASED AND LABEL AS EXHIBIT	RMAT	IE EXTENT T	HEY A	RE AIR AGE IN	EMISSION R	AND FUEL U	SAGE D.	H THE	ERE
19a) MAXIMUM OPERATING HOUR	.s	HOURS/DA	Y;		DAYS/WEE	K:	WEEK	S/YEA	R:
,		24			7		5	2	
b) TYPICAL OPERATING HOURS	3	HOURS/DA	Y:		DAYS/WEE	EK:	WEEK	S/YEA	R:
			,	7		T 11 1 1 1 1 0 / 0	():	650	NOV(%):
20) ANNUAL THROUGHPUT		DEC-FEB(%	6):	MAR	MAY(%):	JUN-AUG(9	/a):	1	_
		25_		<u> </u>	25	<u> 25</u>			25
	M	IATERIAL	USAG	E INF	ORMATIO	N			
		MAXIM	UM RA	TES		Т	YPICAL	RATE	S
21a) RAW MATERIALS	ī	_BS/HR		TONSA	(EAR	LBS/HR		T	ONS/YEAR
N/A									
1 1 1 1 1 1 1 1		mvene							
			-						
			-						
			-					-	
								-	
					1				

	MAXIMU	IM RATES	TYPICA	L RATES
21b) PRODUCTS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR
210,7 (1000010				
N/A				
	j			
				1
	<u></u>	<u></u>		
	MAXIMU	IM RATES	TYPICA	L RATES
OAN DV DDODUGT MATERIAL C		TONS/YEAR	LBS/HR	TONS/YEAR
21c) BY-PRODUCT MATERIALS	LBS/HR	TONS/TEAR	LDS/RK	TONSTEAK
N/A				
				-
		USAGE DATA	L DECIGN CARAC	ITV EID(NO
22a) MAXIMUM FIRING RATE (MILLION BTU/HR):	b) TYPICAL F (MILLION		c) DESIGN CAPAC RATE (MILLION	
,				
d) FUEL TYPE:				
U NATURAL GAS U FU	EL OIL: GRADE NUM	IBER U C	OAL UOTHER_	
IF MORE THAN ONE FUEL IS	USED, ATTACH AN E	EXPLANATION AND LAE	BEL AS EXHIBIT 220-2.	
e) TYPICAL HEAT CONTENT OF	FUEL (BTU/LB.	f) TYPICAL SULI	FUR CONTENT (WT %	, NA FOR NATURAL
BTU/GAL OR BTU/SCF):	,	GAS):	-	
4000 DTII/C	\ <u></u>			
1000 BTU/SC 9) TYPICAL ASH CONTENT (WI		A) b) ANNIIAI FIJI	EL USAGE (SPECIFY U	JNITS, E.G.
GAS):	70,714,11 071 1411 01		BALYEAR, TONYEAR	
23) ARE COMBUSTION EMISSION PROCESS UNIT EMISSIONS?	IS DUCTED TO THE	SAME STACK OR CON	TROLAS	YES ONO
IF NO, IDENTIFY THE EXHAUS	ST POINT FOR COM	BUSTION EMISSIONS:		

E ANY SPE REGULATEI E ANY SPE REGULATEI E ANY SPE REGULATEI REGULATEI REGULATEI REGULATEI	APPLICABLE RULES APPLICABLE RULES APPLICABLE RULES APPLICABLE TO THIS EMISSION STANDARD(S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT (E.G., VOM, IAC 218.204(i)(4), 3.5 LBS/GAL):	REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)	25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)	26) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)	27) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)	28) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)
---	--	--	--	--	---	--

APPLICATION PAGE Printed on Recycled Paper 220-CAAPP

29) DOES THE EMISSION UNIT QUALIFY OTHERWISE APPLICABLE RULE?	FOR AN EXEMPTION	ON FROM AN	(YES	О мо
IF YES, THEN LIST BOTH THE RULE F EXEMPTION. PROVIDE A DETAILED I SUPPORTING DATA AND CALCULATI ATTACHMENT(S) WHICH ADDRESS A	EXPLANATION JUS DNS. ATTACH AN	STIFYING THE EXI D LABEL AS EXHI	EMPTION, IN	SLUDE DE IA	11250
			k.i		
The Third Court of the Court of		INFORMATIO	<u>N</u>	$\overline{}$	$\overline{}$
30) IS THE EMISSION UNIT IN COMPLIAN REQUIREMENTS?			•	U YES	U №
IF NO, THEN FORM 294-CAAPP "COM COMPLYING EMISSION UNITS" MUST	PLIANCE PLAN/SO BE COMPLETED	CHEDULE OF COM AND SUBMITTED	IPLIANCE A WITH THIS AI	DDENDUM FO PLICATION.	OR NON
31) EXPLANATION OF HOW INITIAL COM	PLIANCE IS TO BE	, OR WAS PREVI	OUSLY, DEMO	NSTRATED:	
32) EXPLANATION OF HOW ONGOING CO	OMPLIANCE WILL	BE DEMONSTRA	TED:		
TESTING, MON	TORING, REC	ORDKEEPING	AND REPO	RTING	
33a) LIST THE PARAMETERS THAT RELA DETERMINE FEES, RULE APPLICAB METHOD OF MEASUREMENT, AND	TE TO AIR EMISS	IONS FOR WHICH	RECORDS A	RE BEING MA MEASUREME	ENT, THE
PARAMETER UNIT OF MI	EASUREMENT	METHOD OF MEA	SUREMENT	FRE	EQUENCY

APPLICATION PAGE _ Printed on Recycled Paper 220-CAAPP

RECORDED PARAMETE	R INCLUDE THE METHOD C	ORDS WILL BE CREATED AND M OF RECORDKEEPING, TITLE OF I ITACT FOR REVIEW OF RECORD	PERSON RESPONSIBLE FOR
c) IS COMPLIANCE OF THE IT THE RECORDS? IF NO, EXPLAIN:	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	YES NO
d) ARE ALL RECORDS READ SUBMITTAL TO THE AGEN IF NO, EXPLAIN:		CTION, COPYING AND	YES NO
34a) DESCRIBE ANY MONITO COMPLIANCE:	RS OR MONITORING ACTIVI	ITIES USED TO DETERMINE FEE	S, RULE APPLICABILITY OR
b) WHAT PARAMETER(S) IS(ARE) BEING MONITORED (E	.G., VOM EMISSIONS TO ATMOS	SPHERE)?
c) DESCRIBE THE LOCATION	OF EACH MONITOR (E.G.,	IN STACK MONITOR 3 FEET FRO	OM EXIT):

34d) IS EACH MONITOR EQUIPPED WITH A RECORDING DEVICE?	YES	ONO
IF NO, LIST ALL MONITORS WITHOUT A RECORDING DEVICE:		
e) IS EACH MONITOR REVIEWED FOR ACCURACY ON AT LEAST A QUARTERLY BASIS?	YES	O NO
IF NO, EXPLAIN:		
f) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS IN OPERATION?	YES	O NO
IF NO, EXPLAIN:		
	ì	
35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESUL		
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANC DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING		
SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS		
OPERATING TEST DATE TEST METHOD TESTING COMPANY CONDITIONS	SUMMARY OF I	DECITE
TESTING COMPANT COMMINANT	SON MARKET OF A	CESOLIA
		
36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUEN SUBMITTALS TO THE AGENCY:	CY OF REPORT	
REPORTING REQUIREMENTS TITLE OF REPORT	FREQUENCY	
		
	· ·	
		1

APPLICATION PAGE

1 CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS. 2PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

SPROVIDE ANY OTHER EMISSION RATE WHICH SOMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GRUDSCF, ETC.)

SPAM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS)

FRATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

Printed on Recycled Paper 220-CAAPP

APPLICATION PAGE

MPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 229-5.

		(38	(38) HAZARDOUS	ZARDOUS AIR POLLUTANT EMISSION INFORMATION	T EMISSION IN	FORMATIO	N	
•			O 1ACTUP	O 1ACTUAL EMISSION RATE O 1UNCONTROLLED EMISSION RATE	ITE SION RATE		ALLOWABLE BY RULE	<u> </u>
NAME OF HAP EMITTED	2cas NUMBER		POUNDS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	4DM	⁵ RATE OR STANDARD	APPLICABLE RULE
		MAXIMUM:						
		TYPICAL						
		MAXIMUM						
		TYPICAL:						
		MAXIMUM						
		TYPICAL						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
-		TYPICAL						
		MAXIMUM						
		TYPICAL			and before and the second seco			
		MAXIMUM						
	•	TYPICAL:						
		MAXIMUM:			,			
	•	TYPICAL:						
AMPLE		MAXIMUM	100	12 market	- 一学のなりのでは、一般のないでは、	2,7	98% by W compl device	CFR et
Denzene	74.62	The Control	66	0.8	· 中国	Z 2	(eak-tight mucks	61:302(b).(d)
	TUT OF SHORT	PATERY TUEN	ADE AND CHROCKONE	DELATER ON WULL	danceman and a	OSTEDIMEN .	THE THEY ARE AND EMPERITURE DELATED ON WARMY DESCENSE WE'DE DETERMINED AND LABEL AS EVILIBLE 970.E.	

¹PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GRUDSCF, ETC.).

⁴OM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS).

⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE
Printed on Recycled Paper 220-CAAPP

EXHAUST POINT INFORMATION							
THIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.							
THIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXTRACTLED THROUGH IN 1885.							
39) FLOW DIAGRAM DESIGNATION OF EXHAUST POINT.							
See Figure 2-1							
See Figure 2-1 (i) DESCRIPTION OF EXHAUST POINT (STACK, VENT, ROOF MONITOR, INDOORS, ETC.). IF THE EXHAUST POINT DISCHARGES INDOORS, DO NOT COMPLETE THE REMAINING ITEMS. See Figure 1-2, Appendix A, and Appendix B, exhaust is up of the property of the p							
See Figure 1-2, A	ppenaix A.	AND App	RGE (FT):				
41) DISTANCE TO NEAREST PLANT BOU	NUART FRUIVI EARA V	00110111010011					
350 (approximate 42) DISCHARGE HEIGHT ABOVE GRADE	<u>) </u>						
	(FT):		,				
34 feet (typical)							
43) GOOD ENGINEERING PRACTICE (GEP) HEIGHT, IF KNOWN (FT):							
			OF BOINT THE DIAMETER IS				
44) DIAMETER OF EXHAUST POINT (FT):	NOTE: FOR A NON	CIRCULAR EXHAU	ST POINT, THE DIRAKETERS				
1 128 TIMES THE SQUARE ROOT OF	6.8	steet (app	roximate				
45) EXIT GAS FLOW RATE	a) MAXIMUM (ACFM):	b) TYPICAL (ACFM):				
(1,000 SCFM) 3,700							
46) EXIT GAS TEMPERATURE	a) MAXIMUM (°F):		b) TYPICAL (°F):				
1,500 (typical)							
47) DIRECTION OF EXHAUST (VERTICAL	, LATERAL, DOWNW	/ARD):					
48) LIST ALL EMISSION UNITS AND CON	TROL DEVICES SER	VED BY THIS EXH	AUST POINT:				
NAME			W DIAGRAM DESIGNATION				
(730)							
a)							
b)							
(c)							
(d)							
e)							
		<u></u>					
THE FOLLOWING INFORMATION NEED ONLY	BE SUPPLIED IF READ!	LY AVAILABLE.					
49a) LATITUDE:		b) LONGITUDE:					
			c) UTM HORIZONTAL (KM):				
50) UTM ZONE:	b) UTM VERTICAL	(KM):	C) UTM HURIZUNTAL (KW).				

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AP	PLIC.	ANT'	<u>s use</u>		
Revision #:					
Date:	_ / _		/		
Page		of _			
Source Designation:					

LISTING	OF	INSIGNIFICANT
	4 <i>C</i> .7	IVITIES

FOR CONSUMPTION AT THE SOURCE;

THE WATER:

ID NUMBER:	
PERMIT #:	
DATE:	

THIS FORM MUST BE COMPLETED FOR ALL ACTIVITIES THAT ARE "INSIGNIFICANT" ACCORDING TO 35 ILL. ADM. CODE, SECTION 201.210 AND 201.211 FOR WHICH DETAILED DATA AND INFORMATION, AS REQUESTED IN OTHER FORMS, IS NOT PROVIDED.

SOURCE INFORMATION

1) S	Pagel Landfill				
	ATE FORM PREPARED:	3) SOURCE ID NO. (IF KNOWN):	201-8	301-AAF	_
	INSIGNIFICA	NT ACTIVITIES			W-1
	RE ANY ONE OR ALL OF THE FOLLOWING ACTIVITIES ODE 201.210(b), PRESENT AT THE SOURCE? CHECK			X YES	О мо
AC	FIVITIES IN 35 ILL. ADM. CODE 201.210(b):				
i)	AIR CONDITIONING OR VENTILATING EQUIPMENT NO GENERATED BY OR RELEASED FROM ASSOCIATED		IOVE AIR CO	ONTAMINANTS	
li)	PHOTOGRAPHIC PROCESS EQUIPMENT BY WHICH A TO RADIANT ENERGY;	AN IMAGE IS REPROD	UCED UPON	MATERIAL SE	NSITIZED
iii)	EQUIPMENT USED FOR HYDRAULIC OR HYDROSTAT	TIC TESTING;			
iv)	GENERAL VEHICLE MAINTENANCE AND SERVICING HANDLING	ACTIVITIES AT THE SO	OURCE, OTH	ER THAN GAS	OLINE FUEL

vii) ADMINISTRATIVE ACTIVITIES INCLUDING, BUT NOT LIMITED TO, PAPER SHREDDING, COPYING, PHOTOGRAPHIC ACTIVITIES, AND BLUEPRINTING MACHINES. THIS DOES NOT INCLUDE INCINERATORS:

viii) LAUNDRY DRYERS, EXTRACTORS, AND TUMBLERS PROCESSING CLOTHING, BEDDING, AND OTHER FABRIC ITEMS USED AT THE SOURCE THAT HAVE BEEN CLEANED WITH WATER SOLUTIONS OF BLEACH OR DETERGENTS PROVIDED THAT ANY ORGANIC SOLVENT PRESENT IN SUCH ITEMS BEFORE PROCESSING THAT IS RETAINED FROM CLEAN-UP OPERATIONS SHALL BE ADDRESSED AS PART OF THE VOM EMISSIONS FROM USE OF CLEANING MATERIALS;

CAFETERIAS, KITCHENS AND OTHER FACILITIES USED FOR PREPARING FOOD OR BEVERAGES PRIMARILY

EQUIPMENT USING A WATER, WATER AND SOAP OR DETERGENT, OR A SUSPENSION OF ABRASIVES IN WATER FOR PURPOSES OF CLEANING OR FINISHING PROVIDED NO ORGANIC SOLVENT HAS BEEN ADDED TO

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

FOR APPLICANT'S USE

INSIGNIFICANT ACTIVITIES (continued)

- ix) HOUSEKEEPING ACTIVITIES FOR CLEANING PURPOSES, INCLUDING COLLECTING SPILLED AND ACCUMULATED MATERIALS AT THE SOURCE, INCLUDING OPERATION OF FIXED VACUUM CLEANING SYSTEMS SPECIFICALLY FOR SUCH PURPOSES, BUT NOT INCLUDING USE OF CLEANING MATERIALS THAT CONTAIN ORGANIC SOLVENT;
- x) REFRIGERATION SYSTEMS, INCLUDING STORAGE TANKS USED IN REFRIGERATION SYSTEMS, BUT EXCLUDING ANY COMBUSTION EQUIPMENT ASSOCIATED WITH SUCH SYSTEMS;
- xi) BENCH SCALE LABORATORY EQUIPMENT AND LABORATORY EQUIPMENT USED EXCLUSIVELY FOR CHEMICAL AND PHYSICAL ANALYSIS, INCLUDING ASSOCIATED LABORATORY FUME HOODS, VACUUM PRODUCING DEVICES AND CONTROL DEVICES INSTALLED PRIMARILY TO ADDRESS POTENTIAL ACCIDENTAL RELEASES;
- xii) REST ROOM FACILITIES AND ASSOCIATED CLEANUP OPERATIONS, AND STACKS OR VENTS USED TO PREVENT THE ESCAPE OF SEWER GASES THROUGH PLUMBING TRAPS;
- Xiii) ACTIVITIES ASSOCIATED WITH THE CONSTRUCTION, ON-SITE REPAIR, MAINTENANCE OR DISMANTLEMENT OF BUILDINGS, UTILITY LINES, PIPELINES, WELLS, EXCAVATIONS, EARTHWORKS AND OTHER STRUCTURES THAT DO NOT CONSTITUTE EMISSION UNITS;
 - xiv) STORAGE TANKS OF ORGANIC LIQUIDS WITH A CAPACITY OF LESS THAN 500 GALLONS, PROVIDED THE TANK IS NOT USED FOR STORAGE OF ANY MATERIAL LISTED AS A HAZARDOUS AIR POLLUTANT PURSUANT TO SECTION 112(b) OF THE CLEAN AIR ACT;
 - xv) PIPING AND STORAGE SYSTEMS FOR NATURAL GAS, PROPANE, AND LIQUEFIED PETROLEUM GAS;
 - xvi) WATER TREATMENT OR STORAGE SYSTEMS AS FOLLOWS: (A) SYSTEMS FOR POTABLE WATER OR BOILER FEEDWATER, (B) SYSTEMS, INCLUDING COOLING TOWERS, FOR PROCESS WATER PROVIDED THAT SUCH WATER HAS NOT BEEN IN DIRECT OR INDIRECT CONTACT WITH PROCESS STREAMS THAT CONTAIN VOLATILE ORGANIC MATERIAL OR MATERIALS LISTED AS HAZARDOUS AIR POLLUTANTS PURSUANT TO SECTION 112(b) OF THE CLEAN AIR ACT;
 - xvii) LAWN CARE, LANDSCAPE MAINTENANCE, AND GROUNDSKEEPING ACTIVITIES;

Χ

- xviii) CONTAINERS, RESERVOIRS, OR TANKS USED EXCLUSIVELY IN DIPPING OPERATIONS TO COAT OBJECTS WITH OILS, WAXES, OR GREASES, PROVIDED NO ORGANIC SOLVENT HAS BEEN MIXED WITH SUCH MATERIALS;
- XIX) COLD CLEANING DEGREASERS THAT ARE NOT IN-LINE CLEANING MACHINES, WHERE THE VAPOR PRESSURE OF THE SOLVENTS USED NEVER EXCEED 2kPa MEASURED AT 38C OR 0.7kPa AT 20C;
- xx) MANUALLY OPERATED EQUIPMENT USED FOR BUFFING, POLISHING, CARVING, CUTTING, DRILLING, MACHINING, ROUTING, SANDING, SAWING, SCARFING, SURFACE GRINDING, OR TURNING;
- xxi) USE OF CONSUMER PRODUCTS, INCLUDING HAZARDOUS SUBSTANCES AS THAT TERM IS DEFINED IN THE FEDERAL HAZARDOUS SUBSTANCES ACT, WHERE THE PRODUCT IS USED AT A SOURCE IN THE SAME MANNER AS NORMAL CONSUMER USE;
- xxii) ACTIVITIES DIRECTLY USED IN THE DIAGNOSIS AND TREATMENT OF DISEASE, INJURY OR OTHER MEDICAL CONDITION;
- xxiii) FIREFIGHTING ACTIVITIES AND TRAINING IN PREPARATION FOR FIGHTING FIRES CONDUCTED AT THE SOURCE;
- XXIV) INTERNAL COMBUSTION ENGINE OR BOILER (INCLUDING THE FUEL SYSTEM) OF MOTOR VEHICLES,
 LOCOMOTIVES, AIR CRAFT, WATERCRAFT, LIFTTRUCKS, AND OTHER VEHICLES POWERED BY NONROAD
 ENGINES;
 - xxv) ACTIVITIES ASSOCIATED WITH THE CONSTRUCTION, REPAIR OR MAINTENANCE OF ROADS OR OTHER PAVED OR OPEN AREAS, INCLUDING OPERATION OF STREET SWEEPERS, VACUUM TRUCKS, SPRAY TRUCKS, AND OTHER VEHICLES RELATED TO THE CONTROL OF FUGITIVE EMISSIONS OF SUCH ROADS OR OTHER AREAS;
 - xxvi) STORAGE AND HANDLING OF DRUMS OR OTHER TRANSPORTABLE CONTAINERS WHERE THE CONTAINERS ARE SEALED DURING STORAGE AND HANDLING;

		INSIGNIFICANT ACTIVITIES (continued)		
	xxvi	I) INDIVIDUAL POINTS OF EMISSION OR ACTIVITIES AS FOLLOWS: (A) INDIVIDUAL FLANG SEALS, PRESSURE RELIEF VALVES AND OTHER INDIVIDUAL COMPONENTS THAT HAV LEAKS, (B) INDIVIDUAL SAMPLING POINTS, ANALYZERS, AND PROCESS INSTRUMENT OPERATION MAY RESULT IN EMISSIONS, (C) INDIVIDUAL FEATURES OF AN EMISSION BURNER AND SOOTBLOWERS IN A BOILER OR EACH USE OF CLEANING MATERIALS OF PRINTING LINE, (D) INDIVIDUAL EQUIPMENT THAT IS TRANSPORTABLE OR ACTIVITIES ESTABLISHED FOR TESTING UNITS PRIOR TO SALE OR DISTRIBUTION OR FOR PURPO (E) INDIVIDUAL EQUIPMENT OR ACTIVITIES WITHIN A PILOT PLANT FACILITY THAT IS UTTAINING;	E THE PO TATION, W UNIT SUC ON A COAT WITHIN A OSES OF I	ITENTIAL FOR ! HOSE HAS EACH TING OR A FACILITY RESEARCH, AND
	xxvi	ii) ACTIVITIES AT A SOURCE ASSOCIATED WITH THE MODIFICATION ONLY OR CONSTRU FACILITY, AN EMISSION UNIT OR OTHER EQUIPMENT AT THE SOURCE;	JCTION O	NLY OF A
X	xxix	ACTIVITIES AT A SOURCE ASSOCIATED WITH THE MAINTENANCE, REPAIR, OR DISMAI EMISSION UNIT OR OTHER EQUIPMENT INSTALLED AT THE SOURCE, NOT INCLUDING UNIT OR EQUIPMENT, INCLUDING PREPARATION FOR MAINTENANCE, REPAIR OR DISI PREPARATION FOR SUBSEQUENT STARTUP, INCLUDING PREPARATION OF A SHUTDO REPLACEMENT OF INSULATION, WELDING AND CUTTING, AND STEAM PURGING OF A STARTUP.	THE SHU MANTLEM SWN VES:	TDOWN OF THE IENT, AND SEL FOR ENTRY,
	U IF T	RE ANY EMISSION UNITS AT THE SOURCE CONSIDERED INSIGNIFICANT ACTIVITIES BE NDER ONE OF THE ACTIVITIES OR EMISSION LEVELS LISTED IN 35 ILL. ADM. CODE 201 YES, IDENTIFY THE EMISSION UNITS IN THE "LIST OF INSIGNIFICANT ACTIVITIES PURS HROUGH (18)" AND PROVIDE THE REQUESTED INFORMATION. IF ADDITIONAL SPACE IS ABEL AS EXHIBIT 297-1.	.210(a)(1) SUANT TO	THROUGH (18)? 201.210(a)(1)
	AC.	TIVITIES AND EMISSION LEVELS IN 35 ILL, ADM. CODE 201.210(a)		
	i)	ANY EMISSION UNIT DETERMINED TO BE AN INSIGNIFICANT ACTIVITY BY THE AGENCY PURSUANT TO 35 ILL. ADM. CODE 201.211 (SEE ITEM #6);	X YES	s Ono
	ii)	EMISSION UNITS WITH EMISSIONS THAT NEVER EXCEED 0.1 LBS/HR OF ANY REGULATED AIR POLLUTANT IN THE ABSENCE OF AIR POLLUTION CONTROL EQUIPMENT AND THAT DO NOT EMIT ANY AIR POLLUTANT LISTED AS HAZARDOUS PURSUANT TO SECTION 112(b) OF THE CLEAN AIR ACT;	X YES	s O NO
	ili)	EMISSION UNITS WITH EMISSIONS THAT NEVER EXCEED 0.44 TONS/YR OF ANY REGULATED AIR POLLUTANT IN THE ABSENCE OF AIR POLLUTION CONTROL EQUIPMENT AND THAT DO NOT EMIT ANY AIR POLLUTANT LISTED AS HAZARDOUS PURSUANT TO SECTION 112(b) OF THE CLEAN AIR ACT;	X YES	з 🗆 по
	iv)	DIRECT COMBUSTION UNITS DESIGNED AND USED FOR COMFORT HEATING PURPOSES AND FUEL COMBUSTION EMISSION UNITS AS FOLLOWS: (A) UNITS WITH A RATED HEAT INPUT CAPACITY OF LESS THAN 2.5 MMBTU/HR THAT FIRE ONLY NATURAL GAS, PROPANE OR LIQUEFIED PETROLEUM GAS, (B) UNITS WITH A RATED HEAT INPUT CAPACITY OF LESS THAN 1.0 MMBTU/HR THAT FIRE ONLY OIL OR OIL IN COMBINATION WITH NATURAL GAS, PROPANE OR LIQUEFIED PETROLEUM GAS, AND (C) UNITS WITH A RATED HEAT INPUT CAPACITY OF LESS THAN 200,000 BTU/HR WHICH NEVER BURN REFUSE, OR TREATED OR CHEMICALLY CONTAMINATED WOOD;	X YES	s no
	v)	EXTRUDERS USED FOR THE EXTRUSION OF METALS, MINERALS, PLASTICS, RUBBER, OR WOOD, EXCLUDING EXTRUDERS USED IN THE MANUFACTURE OF POLYMERS, PROVIDED THAT VOLATILE ORGANIC MATERIALS OR CLASS I OR II SUBSTANCES SUBJECT TO THE REQUIREMENTS OF TITLE VI OF THE CLEAN AIR ACT ARE NOT USED AS FOAMING AGENTS OR RELEASE AGENTS OR WERE NOT USED AS FOAMING AGENTS IN THE CASE OF EXTRUDERS PROCESSING SCRAP MATERIAL;	YE	s 🔯 NO
	vi)	FURNACES USED FOR MELTING METALS OTHER THAN BERYLLIUM WITH A BRIM FULL CAPACITY OF LESS THAN 450 CUBIC INCHES BY VOLUME;	YE	·
	vii)	EQUIPMENT USED FOR THE MELTING OR APPLICATION OF LESS THAN 50,000 LBS/YR OF WAX TO WHICH NO ORGANIC SOLVENT HAS BEEN ADDED;	YE	s 💢 no

APPLICATION PAGE

Printed on Recycled Paper 297-CAAPP

	INSIGNIFICANT ACTIVITIES (continued)		
vili)	EQUIPMENT USED FOR FILLING DRUMS, PAILS OR OTHER PACKAGING CONTAINERS, EXCLUDING AEROSOL CANS, WITH SOAPS, DETERGENTS, SURFACTANTS, LUBRICATING OILS, WAXES, VEGETABLE OILS, GREASES, ANIMAL FATS, GLYCERIN, SWEETENERS, CORN SYRUP, AQUEOUS SALT SOLUTIONS, OR AQUEOUS CAUSTIC SOLUTIONS;	YES	⋈ NO
ix)	EQUIPMENT USED FOR THE MIXING AND BLENDING OF MATERIALS AT AMBIENT TEMPERATURE TO MAKE WATER BASED ADHESIVES PROVIDED EACH MATERIAL CONTAINS LESS THAN 5% ORGANIC SOLVENT BY WEIGHT;	YES	🔀 ио
x)	STORAGE TANKS OF ORGANIC LIQUIDS WITH A CAPACITY OF LESS THAN 10,000 GALLONS AND AN ANNUAL THROUGHPUT OF LESS THAN 100,000 GALLONS PROVIDED THE TANK IS NOT USED FOR THE STORAGE OF GASOLINE OR ANY LISTED HAZARDOUS AIR POLLUTANT PURSUANT TO SECTION 112(b) OF THE CLEAN AIR ACT;	X YES	O NO
xi)	STORAGE TANKS OF VIRGIN OR REREFINED DISTILLATE OIL, HYDROCARBON CONDENSATE FROM NATURAL GAS PIPELINE OR STORAGE SYSTEMS, LUBRICATING OIL, OR RESIDUAL FUEL OILS;	X YES	O NO
xii)	DIE CASTING MACHINES WHERE A METAL OR PLASTIC IS FORMED UNDER PRESSURE IN A DIE;	YES	MO
xlii)	COATING OPERATIONS (EXCLUDING POWDER, ARCHITECTURAL AND INDUSTRIAL MAINTENANCE COATING) WITH AGGREGATE VOM USAGE THAT NEVER EXCEEDS 15 LBS/DAY FROM ALL COATING LINES AT THE SOURCE, INCLUDING VOM FROM COATING, DILUTENTS, AND CLEANING MATERIALS;	YES	X NO
xiv)	PRINTING OPERATIONS WITH AGGREGATE ORGANIC SOLVENT USAGE THAT NEVER EXCEEDS 750 GALLONS PER YEAR FROM ALL PRINTING LINES AT THE SOURCE, INCLUDING ORGANIC SOLVENT FROM INKS, DILUTENTS, FOUNTAIN SOLUTIONS, AND CLEANING MATERIALS;	YES	◯X NO
xv)	GAS TURBINES AND STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES OF LESS THAN 112 KW (150 HORSEPOWER) POWER OUTPUT;	YES	Ои 🛭
xvi)	GAS TURBINES AND STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES OF BETWEEN 112 KW AND 1,1118 KW (150 AND 1,500 HORSEPOWER) POWER OUTPUT THAT ARE EMERGENCY OR STANDBY UNITS;	YES	X NO
xvii) STORAGE TANKS OF ANY SIZE CONTAINING EXCLUSIVELY SOAPS, DETERGENTS, SURFACTANTS, GLYCERIN, WAXES, VEGETABLE OILS, GREASES, ANIMAL FATS, SWEETENERS, CORN SYRUP, AQUEOUS SALT SOLUTIONS, OR AQUEOUS CAUSTIC SOLUTIONS PROVIDED AN ORGANIC SOLVENT HAS NOT BEEN MIXED WITH SUCH MATERIALS;	YES	X) NO
xviì	i) LOADING AND UNLOADING SYSTEMS FOR RAILCARS, TANK TRUCKS, OR WATERCRAFT THAT HANDLE ONLY THE FOLLOWING LIQUID MATERIALS PROVIDED AN ORGANIC SOLVENT HAS NOT BEEN MIXED WITH SUCH MATERIALS: SOAPS, DETERGENTS, SURFACTANTS, LUBRICATING OILS, WAXES, GLYCERIN, VEGETABLE OILS, GREASES, ANIMAL FATS, SWEETENER, CORN SYRUP, AQUEOUS SALT SOLUTIONS, OR AQUEOUS CAUSTIC SOLUTIONS.	YES	🛚 по
1 2	ARE ANY EMISSION UNITS AT THE SOURCE PROPOSED TO BE CONSIDERED NSIGNIFICANT ACTIVITIES THAT MEET THE CRITERIA LISTED IN 35 ILL. ADM. CODE 201.211(a)? IF YES, LIST THE EMISSION UNITS IN THE "LIST OF ACTIVITIES FOR WHICH STATUS AS AN INSIGNIFICANT ACTIVITIES IS PROPOSED PURSUANT TO 201.211(a)" AND PROVIDE THE REQUESTED INFORMATION. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 297-2.	YES	🛭 NO
CR	ITERIA IN 35 ILL, ADM. CODE 201.211(a)		
i) ii) iii)	THE EMISSION UNIT WOULD NOT EMIT MORE THAN 1.0 LBS/HR OF ANY REGULATED AIR POLLUTA! HAZARDOUS PURSUANT TO SECTION 112(b) OF THE CLEAN AIR ACT IN THE ABSENCE OF AIR POLI EQUIPMENT; THE EMISSION UNIT WOULD NOT EMIT MORE THA N 0.1 LB/HR OF ANY REGULATED AIR POLLUTA PURSUANT TO SECTION 112 (b) OF THE CLEAN AIR ACT IN THE ABSENCE OF AIR POLLUTION CONTHE EMISSION UNIT IS NOT A PROCESS UNIT.	LUTION CONTROL NT LISTED AS HA	ZARDOUS

APPLICATION PAGE

LIST OF INSIGNIFICANT ACTIVITIES PURSUANT TO 201.210 (a)(1) THROUGH (18)

BASIS FOR DETERMINATION OF EMISSIONS	Albert Communication of the Co							
BASIS FOR INSIGNIFICANCE SECTION 201.210(a)							The state of the s	
DESCRIPTION OF UNIT INCLUDING ANY CONTROL								
# OF UNITS								
EMISSION UNIT AND DESIGNATION								

1/F CONSIDERED INSIGNIFICANT BASED ON EMISSION LEVEL, THE DETERMINATION METHOD OF EMISSION MUST BE PROVIDED (E.G., 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

APPLICATION PAGE Printed on Recycled Paper 297-CAAPP

LIST OF ACTIVITIES FOR WHICH STATUS AS AN INSIGNIFICANT ACTIVITIES IS PROPOSED PURSUANT TO 201.211 (a)

		OPERATING HOURS HRS PER DAY PER WEEK PER DAY WEEK YEAR	OPERATING HOURS EMISSIONS HRS PER DAY PER YEAR POLLUTANT HOUR YEAR OTHER	A A A A A A A A A A A A A A A A A A A
¹ , U	U DESCRIPTION OF UNIT INCLUDING ANY CONTROL	² DISCUSSION:	TION METHOD	SUPPORTING INFORMATION

¹IU - TOTAL NUMBER OF UNITS (EMISSION RATES SHOULD BE PROVIDED ON A PER UNIT BASIS).
²DISCUSSION - PROVIDE AN EXPLANATION OF OPERATING HOURS (E.G., THE UNIT IS ON EMERGENCY STANDBY - THEREFORE IT ONLY OPERATES ONE DAY PER MONTH.)
³DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS).

Printed on Recycled Paper 297-CAAPP

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AP	PLIC	ANT	'S USE
Revision #:			
Date:	_ / _		. /
Page		of .	
Source Design	gnatio	n:	

FUGITIVE EMISSIONS DATA AND INFORMATION

SECONAGENS	
ID NUMBER:	
EMISSION POINT#;	
DATE:	

THIS FORM MAY BE COMPLETED FOR FUGITIVE EMISSION ACTIVITIES RATHER THAN COMPLETING AN EMISSION UNIT OR STAND ALONE FORM. FUGITIVE EMISSIONS ARE DEFINED AS THOSE EMISSIONS WHICH COULD NOT REASONABLY PASS THROUGH A STACK, CHIMNEY, VENT OR OTHER FUNCTIONALLY EQUIVALENT OPENING. NOTE THAT UNCAPTURED PROCESS EMISSION UNIT EMISSIONS ARE TYPICALLY NOT CONSIDERED FUGITIVE AND MUST BE ACCOUNTED FOR ON THE APPROPRIATE EMISSION UNIT OR STAND ALONE FORM. ANY EMISSIONS AT THE SOURCE NOT PREVIOUSLY ACCOUNTED FOR ON AN EMISSION UNIT OR STAND ALONE FORM MUST BE ACCOUNTED FOR ON THIS FORM

SOME EXAMPLES OF EMISSIONS WHICH ARE TYPICALLY CONSIDERED FUGITIVE ARE:

- ROAD DUST EMISSIONS (PAVED ROADS, UNPAVED ROADS, AND LOTS)
- STORAGE PILE EMISSIONS (WIND EROSION, VEHICLE DUMP AND LOAD)
- LOADING/UNLOADING OPERATION EMISSION
- EMISSIONS FROM MATERIAL BEING TRANSPORTED IN A VEHICLE
- EMISSIONS OCCURRING FROM THE UNLOADING AND TRANSPORTING OF MATERIALS COLLECTED BY POLLUTION CONTROL EQUIPMENT
- EQUIPMENT LEAKS (E.G., LEAKS FROM PUMPS, COMPRESSORS, IN-LINE PROCESS VALVES, PRESSURE RELIEF DEVICES, OPEN-ENDED VALVES, SAMPLING CONNECTIONS, FLANGES, AGITATORS, COOLING TOWERS, ETC.)
- GENERAL CLEAN-UP VOM EMISSIONS

NOTE THAT TOTAL EMISSIONS FROM THE SOURCE (TS) ARE EQUAL TO SOURCE-WIDE TOTAL EMISSION UNIT EMISSIONS (PT) PLUS TOTAL FUGITIVE EMISSIONS (FT), E.G., TS = PT + FT.

	SOURCE	INFORMATION	
1) SOURCE NAME:	Pagel Landfill		
2) DATE FORM PREPARED:		3) SOURCE ID NO. (IF KNOWN):	201-801-AAF

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

Printed on Recycled Paper 391-CAAPP

<u>FOR</u>	APPLICANT'S	USE

GENERAL INFORMATION

4) PROVIDE THE FOLLOWING INFORMATION FOR THE FUGITIVE EMISSION POINTS AT THE SOURCE INCLUDED IN THIS APPLICATION. SIMILAR POINTS MAY BE GROUPED TOGETHER.

NOTE: ATTACH THE CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, FROM WHICH THE ABOVE EMISSIONS, WERE BASED AND LABEL AS EXHIBIT 391-1. IF THE ABOVE SPACE WAS NOT ADEQUATE, LIST ALL OTHER FUGITIVE POINTS AND INCLUDE THE REQUIRED INFORMATION ON THIS ATTACHMENT.

FOR PAVED AND UNPAVED ROADS, INCLUDE ROAD MILES (E.G., 6 MILES OF UNPAVED ROADS); FOR STORAGE PILES, INDICATE THE MATERIAL BEING STORED (E.G., 20 LIMESTONE STORAGE PILES); FOR EQUIPMENT LEAK POINTS, GROUP SIMILAR POINTS TOGETHER (E.G., 15 ORGANIC LIQUID PUMPS); FOR TRANSFER POINTS, IDENTIFY THE ORIGIN AND DESTINATION OF TRANSFER AND THE MATERIAL BEING TRANSFERRED (E.G., 5 BELT TO BIN TRANSFERS OF CORN).

FUGITIVE POINT(S)	REGULATED AIR POLLUTANT(S)	MAXIMUM	TYPICA

•			
			1
			
			1
]
With Diagonal Commence			
CH A DIAGRAM OF THE SOURCE	ETHAT INDICATES THE LOCATION IS SUFFICIENT.	ON OF ALL FUGITIVE EM	IISSION POINT

APPLICATION PAGE

SHOWN ON THIS DIAGRAM.

APPLICABLE RULES	6) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITATIONS(S) WHICH ARE APPLICABLE TO FUGITIVE EMISSIONS AT THE SOURCE (E.G., ROAD SEGMENT F, PM-10, IAC 212.316(d), OPACITY < OR = 10% AT 4 FT): FUGITIVE POINTS(S) REQUIREMENT(S) EMISSION STANDARD(S)	REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S) REGULREMENT(S) REGULREMENT(S)
	ANDARD(S) AND LIMITATION T): REGULATED AIR POI	PING RULE(S) WHICH ARE A
	6) PROVIDE ANY SPECIFIC EMISSION STA 212.316(d), OPACITY < OR = 10% AT 4 F FUGITIVE POINTS(S)	7) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE: FUGITIVE POINTS(S) REGULATED AIR POLLUTANT(S)

IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS 391-3.

APPLICATION PAGE Printed on Recycled Paper 391-CAAPP

	REQUIREMENT(S)		REQUIREMENT(S)	REQUIREMENT(S)	
APPLICABLE RULES (CON'T)	EMISSION STANDARD(S)		EMISSION STANDARD(S)	PLICABLE: EMISSION STANDARD(S)	
APPLICA	ULE(S) WHICH ARE APPLICABLE: REGULATED AIR POLLUTANT(S)		RULE(S) WHICH ARE APPLICABLE: REGULATED AIR POLLUTANT(S)	10) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDURES WHICH ARE APPLICABLE. FUGITIVE POINTS(S)	
	8) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE: FUGITIVE POINTS(S) REGULATED AIR POLLUTAN		9) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE. FUGITIVE POILUTANT REGULATED AIR POLLUTANT	10) PROVIDE ANY SPECIFIC TESTING RUL. FUGITIVE POINTS(S)	

IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS 391-3.

APPLICATION PAGE Printed on Recycled Paper 391-CAAPP

COMPLIANCE INFORMATION	
11) IS EACH FUGITIVE POINT IN COMPLIANCE WITH ALL APPLICABLE REQ	UIREMENTS? X YES NO
IF NO, THEN FORM 294-CAAPP "COMPLIANCE PLAN/SCHEDULE OF COM COMPLYING EMISSION UNITS" MUST BE COMPLETED AND SUBMITTED	IPLIANCE ADDENDUM FOR NON WITH THIS APPLICATION.
12) EXPLANATION OF HOW INITIAL COMPLIANCE IS TO BE, OR WAS PREVIO	OUSLY, DEMONSTRATED:
13) EXPLANATION OF HOW ONGOING COMPLIANCE WILL BE DEMONSTRAT	TED:
See Compliance Monitoring &	Response Plan
TESTING, MONITORING, RECORDKEEPING	AND REPORTING
14a) LIST THE PARAMETERS THAT RELATE TO AIR EMISSIONS FOR WHICH DETERMINE FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE 1 METHOD OF MEASUREMENT, AND THE FREQUENCY OF SUCH RECOR	RECORDS ARE BEING MAINTAINED TO THE UNIT OF MEASUREMENT, THE
PARAMETER FUGITIVE POINT METHOD OF MEA	ASUREMENT FREQUENCY

RECORDED PARAMETE	R INCLUDE THE METHOD OF	RDS WILL BE CREATED AND MAI RECORDKEEPING, TITLE OF PE	RSON RESPONSIBLE FOR
RECORDREEPING, AND PARAMETER	METHOD OF RECORD KEEPING	ACT FOR REVIEW OF RECORDS TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON
c) IS COMPLIANCE OF TH THE RECORDS?	E EMISSION UNIT READILY DE	EMONSTRATED BY REVIEW OF	X YES NO
IF NO, EXPLAIN:			
d) ADE ALL DECODDS DE	ADILY AVAILABLE FOR INSPE	CTION CODVING AND/OR	8
SUBMITTAL TO THE AG	ENCY UPON REQUEST?	CHON, COPTING AND/OR	X YES NO
IF NO, EXPLAIN:			
		•	
15a) DESCRIBE ANY MONIT COMPLIANCE:	ORS OR MONITORING ACTIV	ITIES USED TO DETERMINE FEE	S, RULE APPLICABILITY OR
00tti 2,7,1102.			
b) WHAT PARAMETER(S) I	S(ARE) BEING MONITORED?		
o) DESCRIPE THE LOCATI	ON OF EACH MONITOR AND	OR MONITORING PROCEDURES:	
S) DESCRIBE THE LOCATI	ON OF EACH MONITOR AND/C	DR MONITORING PROCEDURES:	
d) IS EACH MONITOR EQU	IPPED WITH A RECORDING D	EVICE? .	YES NO
IF NO, LIST ALL MONITO	DRS WITHOUT A RECORDING	DEVICE:	
			,

APPLICATION PAGE

Printed on Recycled Paper
391-CAAPP

e) IS EACH MONITOR	REVIEWED FOR	ACCURACY OF	NAT LEAST A QUAR	TERLY	YES	O NO	
BASIS?							
IF NO, EXPLAIN:							
f) IS EACH MONITOR	OPERATED AT A	LL TIMES THA	T FUGITIVE EMISSIO	NS MAY	<u> </u>	\bigcap	
OCCUR?				'	U YES	U №	
IF NO, EXPLAIN:							
	·						
	•						
16) PROVIDE INFORM.	ATION ON THE SE	YOT DEACHT T	TOTO IT ANY INIMA	HOLL THE DECLU TO	ADELICED	FOR	
PURPOSES OF TH	E DETERMINATIO	N OF FEES, RI	ULE APPLICABILITY (OR COMPLIANCE.	INCLUDE TH	E TEST	
DATE, TEST METH	OD USED, TESTIN	IG COMPANY,	OPERATING CONDIT	FIONS EXISTING DI	URING THE T	TEST AND A	
SOMMAN OF NEW	BULIG. II ADDIIN		J NELEDED, AT TACIT		111011 001-4.		
FUGITIVE POINT(S)	TEST DATE	TEST METHOD	TESTING FIRM	OPERATING CONDITIONS	SUMMA		
					RESU	<u>LIS</u>	
17) DESCRIBE ALL RE	17) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT						
SUBMITTALS TO T			, , , , , , , , , , , , , , , , , , , ,				
FUGITIVE POINT(S)	REPORTING	REQUIREMENTS	S TIT	LE OF REPORT	FRE	QUENCY	
	-						
					⊣		
			(complete if app	olicable)			
18a) ARE OPACITY RE	ADINGS REQUIRE	D TO BE TAKE	EN?		YES	O NO	
IF YES, SPECIFY	THE RELEVANT F	UGITIVE POIN	T(S):				
0							
ii)	<u> </u>			······································			
iii)							
b) SPECIFY THE FR	EQUENCY OF OPA	CITY READING	GS:				
Į.							

APPLICATION PAGE ____

	() YES	X) NO
IF NO, EXPLAIN AND SPECIFY THE METHOD USED:		
19) IS AN OPERATING PROGRAM FOR FUGITIVE PARTICULATE MATTER AND/OR PM10 CONTROL REQUIRED PURSUANT TO 35 ILL. ADM. CODE 212.309?	X YES	O NO
IF YES, HAS SUCH A PROGRAM PREVIOUSLY BEEN SUBMITTED TO THE AGENCY?	YES	O NO
IF SUCH A PROGRAM HAS NOT BEEN SUBMITTED, IT SHOULD BE ATTACHED TO THI AND LABELED AS 391-5.	S FORM UPON S	SUBMITTAL
20) IS THE SOURCE IN COMPLIANCE WITH 35 ILL. ADM. CODE 212.301 WHICH STATES THAT NO EMISSIONS SHALL BE VISIBLE BEYOND THE PROPERTY LINE OF THE SOURCE?	X YES	O NO
IF NO, EXPLAIN:		•
<u> </u>		
FUGITIVE VOM FROM EQUIPMENT LEAKS (complete if an	policable)	
FUGITIVE VOM FROM EQUIPMENT LEAKS (complete if ap 21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS:		VOM FROM
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE LEAK/NO LEAK STRATIFIED LEAK		
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE LEAK/NO LEAK EMISSION LEAK EMISSION LEAK CONTROL EMISSIONS OF RATE/SCREENII		
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE LEAK/NO LEAK STRATIFIED LEAK EMISSION FACTOR FACTOR FACTOR CO	EMISSIONS OF RATE/SCREENII	
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE EMISSION EMISSION FACTOR ACTOR Description LEAK/NO LEAK STRATIFIED LEAK EMISSION FACTOR FACTOR FACTOR CONTINUENT ACTOR DESCRIPTION LEAK STRATIFIED LEAK FACTOR CONTINUENT LEAK FACTOR FACTOR	EMISSIONS OF RATE/SCREENIF CORRELATION E BEEN PERFOR	∜G VALUE
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE	EMISSIONS OF RATE/SCREENIF CORRELATION E BEEN PERFOR	∜G VALUE
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 3 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT	EMISSIONS OF RATE/SCREENII CORRELATION E BEEN PERFOR 91-6.	NG VALUE RMED. THIS NO
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 3 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION AND LABEL AS 391-7:	EMISSIONS OF RATE/SCREENIF CORRELATION E BEEN PERFOR 91-6. YES I PROGRAM TO	NG VALUE RMED. THIS NO THIS FORM
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE LEAK/NO LEAK STRATIFIED LEAK EMISSION EMISSION EMISSION FACTOR FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 3 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION	EMISSIONS OF RATE/SCREENIF CORRELATION E BEEN PERFOR 91-6. YES I PROGRAM TO	NG VALUE RMED. THIS NO THIS FORM
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE EQUIPMENT LEAKS: AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 3 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION AND LABEL AS 391-7:	EMISSIONS OF RATE/SCREENIF CORRELATION E BEEN PERFOR 91-6. YES I PROGRAM TO	NG VALUE RMED. THIS NO THIS FORM

FUGITIVE VOM	FROM CLEANUP	OPERATIONS (con	plete if applica	able)
23) COMPLETE THE FOLLOWING I EMISSIONS ARE FUGITIVE AN	OR EACH VOM CONT D HAVE NOT BEEN AC	TAINING MATERIAL USEI CCOUNTED FOR ELSEW	FOR CLEANUP F HERE IN THIS APP ANNUAL	PLICATION:
GENERIC NAME OF CLEANUP MATERIAL	DENSITY (LB/GAL)	VOM CONTENT (WEIGHT %)	(GAL/	YEAR) TYPICAL
a)	(25) 6) (4)			
b)				
c)				
24) EXPLAIN THE MEANS BY WHIC	CH THESE MATERIALS	S ARE USED AND WHAT	EQUIPMENT OR I	TEMS ARE BEING
CLEANED:				
25a) ARE ALL VOM USED IN CLEA IF NO, EXPLAIN:	NUP OPERATIONS CO	ONSIDERED TO BE EMIT	TED?	YES NO
b) IF APPLICABLE, COMPLETE I				
i) PROVIDE THE MAXIMUM A HENCE, NOT EMITTED:	ND TYPICAL AMOUNT	OF VOM RECLAIMED A	ND/OR SHIPPED C	PFF-SITE AND
(GAL	SYR)		(TONS/YR)	
ТҮР				
ii) EXPLAIN THE MEANS BY WI	HICH VOM IS COLLEC	TED FOR RECLAMATION	AND/OR DISPOS	AL:
		•		

	ii) EXPLAIN THE MEANS BY	WHICH THE AMOUNT	OF VOM COLLECTED IS	MEASURED OR DET	ERMINED:
ł					
			•		
		•			
<u> </u>	***				
			IVE CONTROL		
26)	COMPLETE THE FOLLOWING CONTROL MEASURE UTILIZ	3, INCLUDING THE MIN	IIMUM AND TYPICAL RI	DUCTION EFFICIENC	Y FOR EACH
'	CONTROL WEASURE OF LEZ	CD.			
					FREQUENCY
İ		REGULATED AIR	FUGITIVE POINT(S)	REDUCTION EFF.(%)	OF CONTROL
	CONTROL MEASURES	POLLUTANT	CONTROLLED	MIN TYP	APPLICATION
a)	-				
b)					
c)					
١.					
d)					
e)					
NOT	E: IF ADDITIONAL SPACE IS	S NEEDED, ATTACH AN	ND LABEL AS 391-8.		
27)	PROVIDE A DESCRIPTION O	F EACH OF THE CONT	ROL MEASURES INDIC	ATED IN ITEM 32. IF A	ADDITIONAL SPACE
	IS NEEDED, ATTACH AND LA	\BEL AS 391-9.			
1	CONTROL MEASE	URE(S)		DESCRIPTION	
a)					
					}
	·				
b)					
ł					
					
ŀ					

(?) (CONTINUED) PROVIDE A DESCRIPTION OF EACH O ADDITIONAL SPACE IS NEEDED, ATTACH AND LABE	F THE CONTROL MEASURES INDICATED IN ITEM 26. IF L AS 391-9.
CONTROL MEASURE(\$)	DESCRIPTION
c)	
d)	
e)	
*'	
	ł
	· · · · · · · · · · · · · · · · · · ·
f)	
g)	
	ļ
L	
h)	

APPLICATION PAGE

Printed on Recycled Paper
391-CAAPP

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE							
Revision #: _							
Date:	. 1		_ /				
Page		_ of .					
Source Desig	nat	ion:					

	<u> </u>		
	FOR A	GENCY USE ONLY	
HAZARDOUS AIR POLLUTANT (HAP)			
EMISSION SUMMARY	PERMIT #:		
	DATE:		
SOUDCE II	IFORMATION		
1) SOURCE NAME:	II OKINATION		
Pagel Landfill		1.00	
2) DATE FORM 3) PREPARED: / /	SOURCE ID NO. (IF KNOWN): 201	-801 - AAF	
LIAZADDOLIC AID DA	SULUTANT FINOSION		
4) DOES ANY EMISSION UNIT AT THE SOURCE EMIT A HA		T?	
(IF NO, THEN THE REMAINDER OF THIS FORM NEED NO	OT BE COMPLETED)	X YES	U NO
5a) DOES THE SOURCE HAVE THE POTENTIAL TO EMIT, I	N THE AGGREGATE,:		
i) 10 TONS PER YEAR OR MORE OF ANY INDIVIDUAL I	HAZARDOUS AIR POLLUTA	ANT; YES	⋈ №
ii) 25 TONS PER YEAR OR MORE OF ANY COMBINATION POLLUTANTS;	N OF HAZARDOUS AIR	YES	X NO
iii) SUCH LESSER QUANTITY AS ESTABLISHED BY RUI SOURCE AS MAJOR FOR HAZARDOUS AIR POLLUTA		E YES	X NO
iv) EMISSIONS OF HAZARDOUS AIR POLLUTANTS WHIP POLLUTANT SPECIFIC CAAPP APPLICABILITY LEVE RULE SUCH THAT THE SOURCE IS REQUIRED TO O SOLELY FOR THIS REASON (i.e., HAP EMISSIONS B APPLICABILITY THRESHOLDS SPECIFIED IN ITEMS REQUIRED TO OBTAIN A CAAPP PERMIT PURSUAN' REQUIREMENT, e.g., NESHAP)?	L AS ESTABLISHED BY US BTAIN A CAAPP PERMIT ELOW THE CAAPP (i), (ii) &(iil) ABOVE, BUT ST	YES	🛭 ио
b) IF ANSWERED YES TO ANY OF THE ABOVE, IDENTIFY SOURCE IS CONSIDERED MAJOR OR REQUIRED TO O		See Appe	ndix A

HAZARDOUS AIR POLLUTANT EMISSIONS TABLE

6) COMPLETE THE FOLLOWING TABLE FOR <u>ALL</u> HAPs WHICH ARE REGULATED AIR POLLUTANTS. THIS TABLE MUST INCLUDE EMISSIONS OF HAPS AT ACTIVITIES PROPOSED TO BE INSIGNIFICANT PURSUANT TO 35 IL. ADM. CODE 201.211. NOTE THAT AN APPLICANT MAY PRESUME THAT AN EMISSION UNIT DOES NOT EMIT A HAP IF IT MEETS THE REQUIREMENTS OF 35 IL. ADM. CODE 201.209.

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

FOR APPLICANT'S USE

APPLICATION PAGE

UNIT EMISSIONS EMISSIONS (TONS/YR) (PLETE THE FOLLOWII SNIFICANT PURSUAN JIREMENTS OF 35 IL.	(6) COMPLETE THE FOLLOWING TABLE FOR ALL HAPS WHICH ARE INSIGNIFICANT PURSUANT TO 35 IL. ADM. CODE 201.211. NOTE RFOLIREMENTS OF 35 IL. ADM. CODE 201.209.	(6) HAZARI PS WHICH ARE REGULATE 201.211. NOTE THAT AN AF	(6) HAZARDOUS AIR POLLUTANT EMISSIONS E REGULATED AIR POLLUTANTS. THIS TABLE MUST INC E THAT AN APPLICANT MAY PRESUME THAT AN EMISSIC	L UTANT EMI S. THIS TABLE I SSUME THAT AI	SSIONS MUST INCLUDE VEMISSION UN	EMISSIONS OF	F HAPS AT ACTIVITIE	6) HAZARDOUS AIR POLLUTANT EMISSIONS REGULATED AIR POLLUTANTS. THIS TABLE MUST INCLUDE EMISSIONS OF HAPS AT ACTIVITIES PROPOSED TO BE THAT AN APPLICANT MAY PRESUME THAT AN EMISSION UNIT DOES NOT EMIT A HAP IF IT MEETS THE
See Appendix A	ME OF HAP EMITTED:	¹ CAS NUMBER	EMISSION UNIT DESIGNATION.	MAXIMUM EMISSIONS (TONS/YR)	TYPICAL EMISSIONS (TONS//YR)	POTENTIAL EMISSIONS (TONS/YR)	OTHER TERMS ²	APPLICABLE RULE	APPLICABILITY LEVEL (UNITS)
See Appendix A									
See Appendix A									
See Appendix A									
ee Appendix A							S		
Appendix A							ee ,		
pendix A							App		
dix A							pen		
A							dix .		
							A		
			- the Albanda and Sp. manner						

1988 - CHEMICAL ABSTRACT SERVICE 2PROVIDE OTHER TERMS AS NECESSARY TO ESTABLISH APPLICABILITY OR COMPLIANCE WITH REQUIREMENTS.

APPLICATION PAGE Printed on Recycled Paper 215-CAAPP